Uroplakins (UPs) are major differentiation products of urothelial umbrella cells, playing important roles in forming the permeability barrier, and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic E. coli receptor. While it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immuno-microscopy of normal and mutant mouse urothelia showed that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently, a Rab27b/Slp2-a complex mediated FV-membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also showed that keratin 20 (K20), which formed a chicken-wire network 150-300 nm below the apical membrane and had hole sizes allowing FV passage, defined a subapical compartment containing FVs primed and strategically located for fusion. Finally, we showed that Rab8/11 and Rab27b function in the same pathway, that Rab27b-knockout leads to uroplakin and Slp2-a destabilization, and that Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.
© 2016 by The American Society for Cell Biology.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!