PsiOxus Therapeutics updates agreement with Bristol-Myers Squibb to advance their clinical stage immuno-oncology collaboration

On April 7, 2021 PsiOxus Therapeutics, Ltd. (PsiOxus) reported an updated agreement to advance its clinical collaboration with Bristol Myers Squibb (NYSE: BMY) to evaluate the safety, tolerability, and preliminary efficacy of PsiOxus’ tumor re-engineering platform, in combination with Bristol Myers Squibb’s PD-1 immune checkpoint inhibitor Opdivo (nivolumab) to treat a range of tumor types in late-stage cancer patients (Press release, PsiOxus Therapeutics, APR 7, 2021, View Source [SID1234577657]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The first stage of this collaboration combined Bristol Myers Squibb’s Opdivo with PsiOxus’ enadenotucirev in the Phase 1 SPICE study to determine the safety and tolerability of combining these two agents, and to optimise the combination intravenous dosing regimen. The revised collaboration announced today will build upon the initial study data and will combine Opdivo with PsiOxus’ NG-641.

NG-641, is a tumor re-engineering product using PsiOxus’ proprietary Tumor-Specific Immuno-Gene Therapy (T-SIGn) platform based upon the enadenotucirev vector. NG-641 is a systemically administered product that encodes for the tumor selective delivery of an anti-FAP / anti-CD3 bispecific, interferon alpha, CXCL9 and CXCL10. Fibroblast Activating Protein (FAP) is selectively upregulated on the cancer associated fibroblasts (CAF) that play an important role in the immune suppressive tumor microenvironment found in many stromally dense tumors that are refractory to checkpoint inhibitors. Using a bispecific to drive T-cell mediated killing of CAF is designed to remove stroma and thereby reduce immune suppression within the tumor. A combination of NG-641 and a checkpoint inhibitor such as Opdivo may thus provide an optimal treatment strategy for certain stromally dense tumors.

"We are delighted to continue our collaboration with Bristol Myers Squibb and to investigate the clinical combination of NG-641 with Opdivo in several tumor types," stated John Beadle, M.D., Chief Executive Officer, PsiOxus. "We believe that NG-641 provides a unique combination of tumor modulatory elements that may synergise with the known efficacy of Opdivo to bring patient benefits for a wide range of tumor types."

Opdivo is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers. Opdivo is a registered trademark of Bristol Myers Squibb.

Under the terms of this agreement, PsiOxus will be responsible for conducting the Phase 1 study with patient recruitment expected to start in the third quarter of 2021.