CRT grants AstraZeneca an exclusive license to a key patent in the field of nuclear receptors

On December 1, 2004 Cancer Research Technology Limited reported that AstraZeneca has licensed exclusive worldwide rights to a patent family relating to a nuclear receptor/co-activator binding motif (Press release, Cancer Research Technology, JAN 12, 2004, View Source [SID1234523443]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Nuclear receptors require co-activator binding in order to activate gene transcription. Ligand-induced nuclear receptor conformational changes facilitate the recruitment of certain co-activators through the recognition of a specific motif contained within the co-activator protein. Prof. Malcolm Parker’s studies, funded by Cancer Research UK, identified this motif within the co-activator protein known as the LXXLL motif (where L is Leucine and X is any amino acid).

The nuclear receptor family represents a plethora of therapeutic targets for many clinical conditions. AstraZeneca’s research interests initially will focus on the area of respiratory and inflammation; however, broader application is possible across all of the company’s research areas. Targeting the nuclear receptor/co-activator interaction represents an alternative strategy for the inhibition of nuclear receptors.

ICN Pharmaceuticals, Inc. Changes Its Name To Valeant Pharmaceuticals International

On November 12, 2003 ICN Pharmaceuticals, Inc. (NYSE: ICN) reported that the company has changed its name to
Valeant Pharmaceuticals International to reflect its transformation into an integrated, global specialty pharmaceutical company (Press release, ICN Pharmaceuticals, NOV 12, 2003, View Source [SID:1234513525]). The name change, effective immediately, will be implemented worldwide. The company will continue to be listed on the New York Stock Exchange. Its trading symbol will change to VRX effective with the start of trading on November 14, 2003.

"Our new name embodies the core principles that underpin this newly invigorated pharmaceutical company," said Robert W. O’Leary, Valeant’s Chairman and Chief Executive Officer. "In recent months, our company has been entirely rebuilt — and reenergized — to reflect the principles and qualities of our people."

Timothy C. Tyson, Valeant’s President and Chief Operating Officer, noted, "Valeant has made rapid strides in the past year-and-a-half under a new management team that has laid out a strategic vision for the company and implemented major changes in product management, research and development, corporate governance and business development. Our new name represents our focus on value and supports our vision to be a leading, fully integrated specialty pharmaceutical company with a robust research and development capability and a worldwide capacity to commercialize products."

In recent months, the company has:
— Launched a new strategic direction focused on specialty pharmaceuticals, and divested non-core businesses;

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

— Implemented a business plan centered on nine global brands in three key therapeutic areas and 10 major markets, which are expected to drive top-line growth;

— Executed a new global manufacturing strategy, including a rationalization plan that involves selling eight of the company’s 13 remaining manufacturing facilities, and is expected to generate cumulative savings over five years of $150 – $200 million;

— Repurchased the outstanding shares of Ribapharm, Inc. held by the public to provide a research and development infrastructure to support our vision and future growth;

— Achieved a significant reduction in corporate expenses with more than $21 million in cost savings already in place; and,

— Restructured and invigorated board committees, implemented major corporate governance initiatives and instituted an employee code of conduct.

The name change will be officially announced today at an event for Valeant employees at the company’s headquarters in Costa Mesa, Calif., along with announcements at the company’s facilities around the world, and advertisements in The Wall Street Journal, Financial Times, The New York Times, Pharmaceutical Executive and MedAd News. New signage was unveiled at the company’s headquarters this morning. The company’s new Web site, www.valeant.com, will also be launched today.

Antisoma in-licenses telomerase inhibitor programme from CRT

On September 10, 2003 Antisoma, the biopharmaceutical company specialising in novel anti-cancer drugs, reported that it has in-licensed a programme of telomerase inhibitors from Cancer Research Technology Ltd, the technology transfer arm of the charity Cancer Research UK (Press release, Cancer Research Technology, SEP 10, 2003, View Source [SID1234523458]). This programme was developed by Professor Stephen Neidle, working first at the Institute of Cancer Research and more recently at the University of London School of Pharmacy. Under the licensing agreement, Antisoma has obtained rights to a number of existing molecules and an option on further telomerase inhibitors generated by Professor Neidle’s group over the next three years.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Telomeres are the protective regions found at the ends of chromosomes (the structures into which the genetic material, DNA, is packaged in each cell of the human body). In normal cells, telomeres act as a ‘life clock’, shortening slightly each time the cell divides. Once the telomeres fall below a critical length, the cell undergoes the self-destruct process known as apoptosis or programmed cell death. This is part of the natural process of cellular ageing and removal of old cells to be replaced by new ones. Cancer cells make an enzyme called telomerase that allows them to maintain their telomeres at a length just sufficient to avoid entering the self-destruct pathway. Telomerase thus enables cancer cells to divide continually and indefinitely, a property fundamental to the progression of the disease. By blocking the action of this enzyme, telomerase inhibitors can prevent the maintenance of telomeres and force cancer cells into apoptosis.

Glyn Edwards, CEO of Antisoma, said ‘Telomerase inhibitors have the potential for broad application against both solid and blood cancers because the telomerase enzyme is important to all types of cancer cell. This programme is an excellent addition to our preclinical portfolio.’

CRT annouce exclusive license with GlaxoSmithKline

On August 6, 2003 Cancer Research Technology Ltd. (CRT), the technology transfer arm of the charity Cancer Research UK, and the technology transfer agent for the Netherlands Cancer Institute (NCI) in Amsterdam, reported that it recently entered into a license agreement granting GlaxoSmithKline exclusive worldwide rights to CRT’s Patent Application WO 00/69390 (the Patent) (Press release, Cancer Research Technology, AUG 6, 2003, View Source [SID1234523460]). The Patent covers technology relating to a novel target that enhances the oral bioavailability of certain cytotoxic oncology drugs, including topotecan. The terms of the Agreement remain confidential.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The Patent was initially filed by the NCI and is based upon the work of Professor Jan Schellens and Dr Alfred Schinkel. They showed that inhibition of a transporter protein from the family of transporters containing known multi-drug resistance proteins, could also be targeted to enhance the uptake of oncology drugs such as topotecan when orally administered.

Cancer Research Technology stated that it was happy to act as a conduit for the development of this important finding and hopes the Patent’s technology will eventually bring benefit to cancer patients worldwide. CRT initially undertook to cover the costs of the patent prosecution while the technology was being developed and CRT looked for a suitable commercial licensee.

CRT and Alnylam Pharmaceuticals Inc. announce alliance in RNAi technology

On July 29, 2003 Cancer Research Technology and Alnylam Pharmaceuticals Inc. reported exclusive license to patent application WO 01/36646 ‘Inhibiting gene expression with dsRNA’ for therapeutic applications (Press release, Cancer Research Technology, JUL 29, 2003, View Source [SID1234523462]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Cancer Research Technology Limited (CRT) and Alnylam Pharmaceuticals Inc. announce today the execution of an exclusive license in the field of human therapeutics for CRT’s key RNA interference (RNAi) patent application ‘Inhibiting gene expression with dsRNA’ (WO 01/36646). The terms of the license have not been disclosed.

CRT CEO Harpal Kumar stated that ‘Alnylam is well positioned to develop RNAi therapeutics. This license should enable the application of this exciting platform technology to therapeutics, with the long term aim of benefiting patients. This license supplements CRT’s nonexclusive licensing strategy in the field of target validation, and the existing license we have in place for the pSUPER RNAi vector with DNAengine’.

Patent application WO 01/36646 is based on the pioneering research of Dr. Magdalena Zernicka-Goetz and colleagues (Dr. Florence Wianny, Professors David Glover and Martin Evans) at the University of Cambridge (UK), who demonstrated RNAi-mediated inhibition of endogenous genes in mammalian cells.

CRT is the holder of two key patent applications in the field of RNAi. CRT’s RNAi patent applications, together branded the SUPER RNAiTM System, are available for licensing on a nonexclusive basis in the fields of target validation and drug discovery.
The second patent filing from CRT covers pSUPER, a vector for long-term expression of RNAi effectors in mammalian cells, developed at the Netherlands Cancer Institute (Amsterdam) in the group of Professor Rene Bernards.

Several pharmaceutical and biotechnology companies are working with CRT towards generating RNAi-based systems to meet the current demands of the industry for higher throughput analysis of mammalian gene function and rapid production of disease models to aid drug discovery. In addition, in association with CRT, Cancer Research UK is cofunding development of a library of pSUPER vectors expressing short interfering RNA targeted against cancer genes, which is under development at the Netherlands Cancer Institute.