Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study.

The first-in-class small molecule inhibitor OTX015 (MK-8628) specifically binds to bromodomain motifs BRD2, BRD3, and BRD4 of bromodomain and extraterminal (BET) proteins, inhibiting them from binding to acetylated histones, which occurs preferentially at super-enhancer regions that control oncogene expression. OTX015 is active in haematological preclinical entities including leukaemia, lymphoma, and myeloma. We aimed to establish the recommended dose of OTX015 in patients with haematological malignancies. We report the results from a cohort of patients with lymphoma or multiple myeloma (non-leukaemia cohort).
In this dose-escalation, open-label, phase 1 study, we recruited patients from seven university hospital centres (in France [four], Switzerland [one], UK [one], and Italy [one]). Adult patients with non-leukaemia haematological malignancies who had disease progression on standard therapies were eligible to participate. Patients were treated with oral OTX015 once a day continuously over five doses (10 mg, 20 mg, 40 mg, 80 mg, and 120 mg), using a conventional 3 + 3 design, with allowance for evaluation of alternative administration schedules. The primary endpoint was dose-limiting toxicity (DLT) in the first treatment cycle (21 days). Secondary objectives were to evaluate safety, pharmacokinetics, and preliminary clinical activity of OTX015. The study is ongoing and is registered with ClinicalTrials.gov, number NCT01713582.
Between Feb 4, 2013, and Sept 5, 2014, 45 patients (33 with lymphoma and 12 with myeloma), with a median age of 66 years (IQR 55-72) and a median of four lines of prior therapy (IQR 3-5), were enrolled and treated. No DLTs were observed in the doses up to and including 80 mg once a day (first three patients). We then explored a schedule of 40 mg twice a day (21 of 21 days). DLTs were reported in five of six patients receiving OTX015 at this dose and schedule (all five patients had grade 4 thrombocytopenia). We explored various schedules at 120 mg once a day but none was tolerable, with DLTs of thrombocytopenia, gastrointestinal events (diarrhoea, vomiting, dysgeusia, mucositis), fatigue, and hyponatraemia in 11 of 18 evaluable patients. At this point, the Safety Monitoring Committee decided to establish the feasibility of 80 mg once a day on a continuous basis, and four additional patients were enrolled at this dose. DLTs (grade 4 thrombocytopenia) was noted in two of the patients. In light of these DLTs and other toxicities noted at 120 mg, the dose of 80 mg once a day was selected, although on a schedule of 14 days on, 7 days off. Common toxic effects reported in the study were thrombocytopenia (43 [96%] patients), anaemia (41 [91%]), neutropenia (23 [51%]), diarrhoea (21 [47%]), fatigue (12 [27%]), and nausea (11 [24%]). Grade 3-4 adverse events were infrequent other than thrombocytopenia (26 [58%]). OTX015 plasma peak concentrations and areas under the concentration versus time curve increased proportionally with dose. Trough concentrations increased less than proportionally at lower doses, but reached or exceeded the in-vitro active range at 40 mg twice a day and 120 mg once a day. Three patients with diffuse large B-cell lymphoma achieved durable objective responses (two complete responses at 120 mg once a day, and one partial response at 80 mg once a day), and six additional patients (two with diffuse large B-cell lymphoma, four with indolent lymphomas) had evidence of clinical activity, albeit not meeting objective response criteria.
The once-daily recommended dose for oral, single agent oral OTX015 in patients with lymphoma is 80 mg on a 14 days on, 7 days off schedule, for phase 2 studies. OTX015 is under evaluation in expansion cohorts using this intermittent administration (14 days every 3 weeks) to allow for recovery from toxic effects.
Oncoethix GmbH (a wholly owned subsidiary of Merck Sharp & Dohme Corp).
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Cell-to-Cell Variation in p53 Dynamics Leads to Fractional Killing.

Many chemotherapeutic drugs kill only a fraction of cancer cells, limiting their efficacy. We used live-cell imaging to investigate the role of p53 dynamics in fractional killing of colon cancer cells in response to chemotherapy. We found that both surviving and dying cells reach similar levels of p53, indicating that cell death is not determined by a fixed p53 threshold. Instead, a cell’s probability of death depends on the time and levels of p53. Cells must reach a threshold level of p53 to execute apoptosis, and this threshold increases with time. The increase in p53 apoptotic threshold is due to drug-dependent induction of anti-apoptotic genes, predominantly in the inhibitors of apoptosis (IAP) family. Our study underlines the importance of measuring the dynamics of key players in response to chemotherapy to determine mechanisms of resistance and optimize the timing of combination therapy.
Copyright © 2016 Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Impact of ELN recommendations in the management of first-line treated chronic myeloid leukaemia patients: a French cross-sectional study.

The availability of tyrosine kinase inhibitors has extended therapeutic options for chronic myeloid leukaemia (CML) patients. Monitoring recommendations and clinical response goals have recently been updated. The objective of this study was to describe the profile of CML patients in chronic phase currently receiving first-line therapy, including treatment, monitoring and response kinetics. A multicentre, cross-sectional, epidemiological survey in unselected chronic phase CML patients in France attending consultations during a one-month period was performed. 438 of 697 (62·8%) reported patients were currently receiving first-line treatment and were analysed. Imatinib was the most frequently received treatment (72·4% of patients). Retrospective cytogenetic and molecular assessments at 3, 6, 12 or 18 months were available in 88·4% of patients. At the 12-month assessment, 32·2% were not in major molecular response (MMR). At last assessment, among 355 patients with duration of treatment ≥ 12 months, 91·5% had achieved MMR and 66·5% were in deep molecular response. This study, performed in everyday practice population of CML patients, suggests that monitoring of molecular responses in real-life practice is aligned with European LeukaemiaNet recommendations. The majority of patients still receiving first-line treatment are in optimal response, with a few being classified as in the warning area or responding to failure.
© 2016 John Wiley & Sons Ltd.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


A phase I dose escalation study of NK012, an SN-38 incorporating macromolecular polymeric micelle.

This study evaluated the safety, tolerability, pharmacokinetics, and maximum tolerated dose (MTD) and recommended phase II dose (RD) of NK012, a macromolecular polymeric micelle formulation of SN-38 (the active metabolite of irinotecan).
Patients with previously treated advanced solid tumors and acceptable organ function were administered NK012 as a 30-min infusion every 21 or 28 days without premedications. Patients were screened for UGT1A1 *28 polymorphism prior to enrollment. Patients homozygous for UGT1A1*28 allele (*28/*28 genotype patients) were treated at a reduced dose level with the potential for dose escalation based on toxicities. Pharmacokinetic samples were obtained during cycles 1 and 2.
Thirty-nine patients were enrolled, and thirty-eight patients were treated with NK012. NK012 was escalated from 9 to 37 mg/m(2) in patients with UGT1A1*28 allele genotype of wt/wt and wt/*28. The MTD/RD of a Q21D regimen was determined to be 28 mg/m(2) where the dose-limiting toxicity is myelosuppression, which appears to be cumulative and limits timely subsequent dosing. Based on delayed neutrophil recovery, the NK012 dose of 28 mg/m(2) administered on an every 28 days schedule was confirmed as the RD. Gastrointestinal toxicities were mild, with no grade 3 diarrhea reported. The T1/2z value of polymer-unbound SN-38 was significantly prolonged compared to that of SN-38 metabolized from CPT-11, indicating a sustained high systemic SN-38 concentration. Six patients had confirmed partial responses. Eighteen additional patients had stable disease as their best response to treatment.
The recommended phase II dose of NK012 for UGT1A1 wt/wt and wt/*28 genotype patients is 28 mg/m(2) every 28 days. Additional clinical development as a single agent in specific patient populations or in combination with other chemotherapy agents is warranted.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!