The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition.

Clinical trials with immune checkpoint inhibitors have provided important insights into the mode of action of anticancer immune therapies and potential mechanisms of immune escape. Development of the next wave of rational clinical combination strategies will require a deep understanding of the mechanisms by which combination partners influence the battle between the immune system’s capabilities to fight cancer and the immune-suppressive processes that promote tumor growth. This review focuses on our current understanding of tumor and circulating pharmacodynamic correlates of immune modulation and elaborates on lessons learned from human translational research with checkpoint inhibitors. Actionable tumor markers of immune activation including CD8(+)T cells, PD-L1 IHC as a pharmacodynamic marker of T-cell function, T-cell clonality, and challenges with conduct of trials that ask scientific questions from serial biopsies are addressed. Proposals for clinical trial design, as well as future applications of peripheral pharmacodynamic endpoints as potential surrogates of early clinical activity, are discussed. On the basis of emerging mechanisms of response and immune escape, we propose the concept of the tumor immunity continuum as a framework for developing rational combination strategies.Clin Cancer Res; 22(8); 1865-74. ©2016 AACR (Free AACR Whitepaper) SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "OPPORTUNITIES AND CHALLENGES IN CANCER IMMUNOTHERAPY".
©2016 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Epoetin beta pegol, but not recombinant erythropoietin, retains its hematopoietic effect in vivo in the presence of the sialic acid-metabolizing enzyme sialidase.

Erythropoiesis-stimulating agents (ESAs) are widely used for treating chronic kidney disease (CKD)-associated anemia. The biological activity of ESAs is mainly regulated by the number of sialic acid-containing carbohydrates on the erythropoietin (EPO) peptide. Sialidase, a sialic acid-metabolizing enzyme that accumulates in CKD patients, is suspected of contributing to shortening the circulation half-life of ESAs. Epoetin beta pegol (continuous erythropoietin receptor activator; C.E.R.A.), is an EPO integrated with methoxypolyethylene glycol (PEG). It has been suggested that C.E.R.A. may exert a favorable therapeutic effect, even under conditions of elevated sialidase; however, no detailed investigation of the pharmacological profile of C.E.R.A. in the presence of sialidase has been reported. In the present study, we injected C.E.R.A. or EPO pre-incubated with sialidase into rats, and assessed the hematopoietic effect by reticulocyte count. The hematopoietic effect of C.E.R.A., but not EPO, was preserved after sialidase treatment, despite the removal of sialic acid. Proliferation of EPO-dependent leukemia cells (AS-E2) was significantly increased by desialylated C.E.R.A. and EPO compared to non-treated C.E.R.A. or EPO. In conclusion, we show that C.E.R.A. exerts a favorable hematopoietic effect even under conditions of elevated sialidase. Our findings may contribute to a better understanding of CKD and more effective therapeutic approaches based on a patient’s profile of anemia.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial.

The irreversible ErbB family blocker afatinib and the reversible EGFR tyrosine kinase inhibitor gefitinib are approved for first-line treatment of EGFR mutation-positive non-small-cell lung cancer (NSCLC). We aimed to compare the efficacy and safety of afatinib and gefitinib in this setting.
This multicentre, international, open-label, exploratory, randomised controlled phase 2B trial (LUX-Lung 7) was done at 64 centres in 13 countries. Treatment-naive patients with stage IIIB or IV NSCLC and a common EGFR mutation (exon 19 deletion or Leu858Arg) were randomly assigned (1:1) to receive afatinib (40 mg per day) or gefitinib (250 mg per day) until disease progression, or beyond if deemed beneficial by the investigator. Randomisation, stratified by EGFR mutation type and status of brain metastases, was done centrally using a validated number generating system implemented via an interactive voice or web-based response system with a block size of four. Clinicians and patients were not masked to treatment allocation; independent review of tumour response was done in a blinded manner. Coprimary endpoints were progression-free survival by independent central review, time-to-treatment failure, and overall survival. Efficacy analyses were done in the intention-to-treat population and safety analyses were done in patients who received at least one dose of study drug. This ongoing study is registered with ClinicalTrials.gov, number NCT01466660.
Between Dec 13, 2011, and Aug 8, 2013, 319 patients were randomly assigned (160 to afatinib and 159 to gefitinib). Median follow-up was 27·3 months (IQR 15·3-33·9). Progression-free survival (median 11·0 months [95% CI 10·6-12·9] with afatinib vs 10·9 months [9·1-11·5] with gefitinib; hazard ratio [HR] 0·73 [95% CI 0·57-0·95], p=0·017) and time-to-treatment failure (median 13·7 months [95% CI 11·9-15·0] with afatinib vs 11·5 months [10·1-13·1] with gefitinib; HR 0·73 [95% CI 0·58-0·92], p=0·0073) were significantly longer with afatinib than with gefitinib. Overall survival data are not mature. The most common treatment-related grade 3 or 4 adverse events were diarrhoea (20 [13%] of 160 patients given afatinib vs two [1%] of 159 given gefitinib) and rash or acne (15 [9%] patients given afatinib vs five [3%] of those given gefitinib) and liver enzyme elevations (no patients given afatinib vs 14 [9%] of those given gefitinib). Serious treatment-related adverse events occurred in 17 (11%) patients in the afatinib group and seven (4%) in the gefitinib group. Ten (6%) patients in each group discontinued treatment due to drug-related adverse events. 15 (9%) fatal adverse events occurred in the afatinib group and ten (6%) in the gefitinib group. All but one of these deaths were considered unrelated to treatment; one patient in the gefitinib group died from drug-related hepatic and renal failure.
Afatinib significantly improved outcomes in treatment-naive patients with EGFR-mutated NSCLC compared with gefitinib, with a manageable tolerability profile. These data are potentially important for clinical decision making in this patient population.
Boehringer Ingelheim.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines.

Somatic mutations binding to the patient’s MHC and recognized by autologous T cells (neoepitopes) are ideal cancer vaccine targets. They combine a favorable safety profile due to a lack of expression in healthy tissues with a high likelihood of immunogenicity, as T cells recognizing neoepitopes are not shaped by central immune tolerance. Proteins mutated in cancer (neoantigens) shared by patients have been explored as vaccine targets for many years. Shared ("public") mutations, however, are rare, as the vast majority of cancer mutations in a given tumor are unique for the individual patient. Recently, the novel concept of truly individualized cancer vaccination emerged, which exploits the vast source of patient-specific "private" mutations. Concurrence of scientific advances and technological breakthroughs enables the rapid, cost-efficient, and comprehensive mapping of the "mutanome," which is the entirety of somatic mutations in an individual tumor, and the rational selection of neoepitopes. How to transform tumor mutanome data to actionable knowledge for tailoring individualized vaccines "on demand" has become a novel research field with paradigm-shifting potential. This review gives an overview with particular focus on the clinical development of such vaccines.Clin Cancer Res; 22(8); 1885-96. ©2016 AACR (Free AACR Whitepaper) SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "OPPORTUNITIES AND CHALLENGES IN CANCER IMMUNOTHERAPY".
©2016 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Pharmacodynamics of isavuconazole in experimental invasive pulmonary aspergillosis: implications for clinical breakpoints.

Isavuconazole, a novel triazole antifungal agent, has broad-spectrum activity against Aspergillus spp. and other pathogenic fungi. The isavuconazole exposure-response relationship in experimental invasive pulmonary aspergillosis using galactomannan index (GMI) suppression as a marker of disease clearance was explored.
The impact of exposure on GMI suppression in persistently neutropenic rabbits treated with isavuconazonium sulphate (isavuconazole-equivalent dosages of 20, 40 or 60 mg/kg every 24 h, after a 90 mg/kg loading dose) for 12 days was linked using mathematical modelling. Bridging to humans using population pharmacokinetic (PK) data from a clinical trial in invasive aspergillosis was performed using Monte Carlo simulations.
Mean plasma isavuconazole AUC/MIC (EC50) of 79.65 (95% CI 32.2, 127.1) produced a half-maximal effect in GMI suppression. The inhibitory sigmoid Emax curve dropped sharply after an AUC/MIC of ≥30 and was near maximum (EC80) at ∼130. Bridging the experimental PK/pharmacodynamic (PD) target to human population PK data was then used to return to the rabbit model to determine a clinically relevant PD endpoint. The clinical dosing regimen used in the trial would result in a mean GMI of 4.3 ± 1.8, which is a 50% reduction from the starting GMI in the experiment.
The clinical trial results showing the non-inferiority of isavuconazole to voriconazole for all-cause mortality further support the PK-PD endpoint, thereby demonstrating the usefulness of the rabbit model and endpoint for isavuconazole and implications on interpretive breakpoints. Importantly, the analysis supports this model as an important tool for development of antifungal agents.
© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected].

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!