Longitudinal noninvasive imaging of progesterone receptor as a predictive biomarker of tumor responsiveness to estrogen deprivation therapy.

To investigate whether longitudinal functional PET imaging of mammary tumors using the radiopharmaceuticals [(18)F]FDG (to measure glucose uptake), [(18)F]FES [to measure estrogen receptor (ER) levels], or [(18)F]FFNP [to measure progesterone receptor (PgR) levels] is predictive of response to estrogen-deprivation therapy.
[(18)F]FDG, [(18)F]FES, and [(18)F]FFNP uptake in endocrine-sensitive and -resistant mammary tumors was quantified serially by PET before ovariectomy or estrogen withdrawal in mice, and on days 3 and 4 after estrogen-deprivation therapy. Specificity of [(18)F]FFNP uptake in ERα(+) mammary tumors was determined by competition assay using unlabeled ligands for PgR or glucocorticoid receptor (GR). PgR expression was also assayed by immunohistochemistry (IHC).
The levels of [(18)F]FES and [(18)F]FDG tumor uptake remained unchanged in endocrine-sensitive tumors after estrogen-deprivation therapy compared with those at pretreatment. In contrast, estrogen-deprivation therapy led to a reduction in PgR expression and [(18)F]FFNP uptake in endocrine-sensitive tumors, but not in endocrine-resistant tumors, as early as 3 days after treatment; the changes in PgR levels were confirmed by IHC. Unlabeled PgR ligand R5020 but not GR ligand dexamethasone blocked [(18)F]FFNP tumor uptake, indicating that [(18)F]FFNP bound specifically to PgR. Therefore, a reduction in FFNP tumor to muscle ratio in mammary tumors predicts sensitivity to estrogen-deprivation therapy.
Monitoring the acute changes in ERα activity by measuring [(18)F]FFNP uptake in mammary tumors predicts tumor response to estrogen-deprivation therapy. Longitudinal noninvasive PET imaging using [(18)F]FFNP is a robust and effective approach to predict tumor responsiveness to endocrine treatment.
©2014 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


XPO1 Inhibition Preferentially Disrupts the 3D Nuclear Organization of Telomeres in Tumor Cells.

Previous work has shown that the three-dimensional (3D) nuclear organization of telomeres is altered in cancer cells and the degree of alterations coincides with aggressiveness of disease. Nuclear pores are essential for spatial genome organization and gene regulation and XPO1 (exportin 1/CRM1) is the key nuclear export protein. The Selective Inhibitor of Nuclear Export (SINE) compounds developed by Karyopharm Therapeutics (KPT-185, KPT-330/selinexor, and KPT-8602) inhibit XPO1 nuclear export function. In this study, we investigated whether XPO1 inhibition has downstream effects on the 3D nuclear organization of the genome. This was assessed by measuring the 3D telomeric architecture of normal and tumor cells in vitro and ex vivo. Our data demonstrate for the first time a rapid and preferential disruption of the 3D nuclear organization of telomeres in tumor cell lines and in primary cells ex vivo derived from treatment-naïve newly diagnosed multiple myeloma patients. Normal primary cells in culture as well as healthy lymphocyte control cells from the same patients were minimally affected. Using both lymphoid and non-lymphoid tumor cell lines, we found that the downstream effects on the 3D nuclear telomere structure are independent of tumor type. We conclude that the 3D nuclear organization of telomeres is a sensitive indicator of cellular response when treated with XPO1 inhibitors. This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance.

Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem-haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Correlation of PD-L1 tumor expression and treatment outcomes in patients with renal cell carcinoma receiving sunitinib or pazopanib: results from COMPARZ, a randomized controlled trial.

The interaction of programmed death-1 ligand (PD-L1) with its receptor (PD-1) on T cells inactivates antitumor immune responses. PD-L1 expression has been associated with poor outcomes in renal cell carcinoma (RCC) but has not been investigated in advanced RCC patients receiving VEGF-targeted therapy.
Formalin-fixed paraffin-embedded specimens were collected at baseline from patients in the COMPARZ trial. Tumor cell PD-L1 expression by IHC was evaluated using H-score (HS). Dual PD-L1/CD68 staining was used to differentiate PD-L1 tumor expression from tumor-associated macrophages. Intratumor CD8-positive T cells were quantified morphometrically. Associations between biomarkers and survival were investigated using the log-rank test.
HS data were available from 453 of 1,110 patients. Sixty-four percent of patients had negative PD-L1 expression (HS = 0). Patients with HS > 55 (n = 59, 13%) had significantly shorter overall survival (OS) than those with HS ≤ 55 in both pazopanib and sunitinib arms (median 15.1 vs. 35.6 and 15.3 vs. 27.8 months, respectively, P = 0.03). In both arms, median OS was shortest in patients with HS > 55 and intratumor CD8-positive T-cell counts > 300 (9.6 and 11.9 months with pazopanib and sunitinib, respectively). Median OS in patients with HS ≤ 55 and CD8-positive T-cell counts ≤ 300 was 36.8 and 28.0 months with pazopanib and sunitinib, respectively. Progression-free survival results were similar to OS results.
Increased tumor cell PD-L1, or PD-L1 plus tumor CD8-positive T-cell counts, were associated with shorter survival in patients with metastatic RCC receiving VEGF-targeted agents. These findings may have implications for future design of randomized clinical trials in advanced RCC.
©2014 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Anti-miR-21 Suppresses Hepatocellular Carcinoma Growth via Broad Transcriptional Network Deregulation.

Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options available to cancer patients. MicroRNA 21-5p (miR-21) has been shown to be upregulated in HCC, but the contribution of this oncomiR to the maintenance of tumorigenic phenotype in liver cancer remains poorly understood. We have developed potent and specific single-stranded oligonucleotide inhibitors of miR-21 (anti-miRNAs) and used them to interrogate dependency on miR-21 in a panel of liver cancer cell lines. Treatment with anti-miR-21, but not with a mismatch control anti-miRNA, resulted in significant derepression of direct targets of miR-21 and led to loss of viability in the majority of HCC cell lines tested. Robust induction of caspase activity, apoptosis, and necrosis was noted in anti-miR-21-treated HCC cells. Furthermore, ablation of miR-21 activity resulted in inhibition of HCC cell migration and suppression of clonogenic growth. To better understand the consequences of miR-21 suppression, global gene expression profiling was performed on anti-miR-21-treated liver cancer cells, which revealed striking enrichment in miR-21 target genes and deregulation of multiple growth-promoting pathways. Finally, in vivo dependency on miR-21 was observed in two separate HCC tumor xenograft models. In summary, these data establish a clear role for miR-21 in the maintenance of tumorigenic phenotype in HCC in vitro and in vivo.
miR-21 is important for the maintenance of the tumorigenic phenotype of HCC and represents a target for pharmacologic intervention.
©2015 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!