Identification of New ATG4B Inhibitors Based on a Novel High-Throughput Screening Platform.

Autophagy is an evolutionarily conserved homeostasis process through which aggregated proteins or damaged organelles are enveloped in a double-membrane structure called an autophagosome and then digested in a lysosome-dependent manner. Growing evidence suggests that malfunction of autophagy contributes to the pathogenesis of a variety of diseases, including cancer, viral infection, and neurodegeneration. However, autophagy is a complicated process, and understanding of the relevance of autophagy to disease is limited by lack of specific and potent autophagy modulators. ATG4B, a Cys-protease that cleaves ATG8 family proteins, such as LC3B, is a key protein in autophagosome formation and maturation process. A novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay measuring protease activity of ATG4B was developed, validated, and adapted into a high-throughput screening (HTS) format. HTS was then conducted with a Roche focus library of 57,000 compounds. After hit confirmation and a counterscreen to filter out fluorescence interference compounds, 267 hits were confirmed, constituting a hit rate of 0.49%. Furthermore, among 65 hits with an IC50 < 50 µM, one compound mimics the LC3 peptide substrate (-TFG-). Chemistry modification based on this particular hit gave preliminary structure activity relationship (SAR) resulting in a compound with a 10-fold increase in potency. This compound forms a stable covalent bond with Cys74 of ATG4B in a 1:1 ratio as demonstrated by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Furthermore, this compound displayed cellular ATG4B inhibition activity. Overall, the novel TR-FRET ATG4B protease assay plus counterscreen assay provides a robust platform to identify ATG4B inhibitors, which would help to elucidate the mechanism of the autophagy pathway and offer opportunities for drug discovery.
© 2016 Society for Laboratory Automation and Screening.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma.

Elotuzumab is a humanized immunoglobulin G1 monoclonal antibody in development for the treatment of patients with multiple myeloma who have received one or more prior therapies. In this work, 6958 elotuzumab serum concentrations from 375 patients enrolled in four Phase 1 to 3 clinical trials were used to analyze the pharmacokinetics (PK) of elotuzumab. A population PK model with parallel linear and Michaelis-Menten elimination from the central compartment and limited-capacity target-mediated elimination from the peripheral compartment described the elotuzumab concentration-time course. Clearance of elotuzumab increased with increasing body weight and weight-based dosing generated uniform exposures across a range of body weights. Coadministration of lenalidomide/dexamethasone background therapy decreased elotuzumab nonspecific clearance by 35 %. Target-mediated elimination of elotuzumab increased with increasing baseline serum M-protein, resulting in lower exposure in patients with high baseline serum M-protein concentration. Age, race, sex, renal and hepatic function, Eastern Cooperative Oncology Group performance status, lactate dehydrogenase, albumin and β2-microglobulin had less than 20 % effect on model parameters and are unlikely to have clinically meaningful effects. Impact of anti-drug antibodies (ADAs) on the PK of elotuzumab was assessed as an ad hoc analysis. In the majority of ADA-positive patients, immunogenicity started early, was transient and resolved by 2-4 months. Since the majority of patients had ADAs detected early, this resulted in a corresponding transient increase in nonspecific clearance at these time points. Nonspecific clearance appeared to return to baseline at later time points when ADAs were no longer detected.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Expression patterns of ERVWE1/Syncytin-1 and other placentally expressed human endogenous retroviruses along the malignant transformation process of hydatidiform moles.

Up to 20% of hydatidiform moles are followed by malignant transformation in gestational trophoblastic neoplasia and require chemotherapy. Syncytin-1 is involved in human placental morphogenesis and is also expressed in various cancers. We assessed the predictive value of the expression of Syncytin-1 and its interactants in the malignant transformation process of hydatidiform moles.
Syncytin-1 glycoprotein was localized by immunohistochemistry in hydatidiform moles, gestational trophoblastic neoplasia and control placentas. The transcription levels of its locus ERVWE1, its interaction partners (hASCT1, hASCT2, TLR4 and DC-SIGN) and two loci (ERVFRDE1 and ERV3) involved the expression of other placental envelopes were assessed by real-time PCR.
Syncytin-1 glycoprotein was expressed in syncytiotrophoblast of hydatidiform moles with an apical enhancement when compared with normal placentas. Moles with further malignant transformation had a higher staining intensity of Syncytin-1 surface unit C-terminus but the transcription level of its locus ERVWE1 was not different from that of moles with further remission and normal placentas. hASCT1 and TLR4, showed lower transcription levels in complete moles when compared to normal placentas. ERVWE1, ERVFRDE1 and ERV3 transcription was down-regulated in hydatidiform moles and gestational trophoblastic neoplasia.
Variations of Syncytin-1 protein localization and down-regulation of hASCT1 and TLR4 transcription are likely to reflect altered functions of Syncytin-1 in the premalignant context of complete moles. The reduced transcription in gestational trophoblastic diseases of ERVWE1, ERVFRDE1 and ERV3, which expression during normal pregnancy is differentially regulated by promoter region methylation, suggest a joint dysregulation mechanism in malignant context.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death.

Tumor necrosis factor (TNF) is a potent inflammatory cytokine that exerts its functions through the activation of two distinct receptors, TNFR1 and TNFR2. Both receptors can activate canonical NF-κB and JNK MAP kinase signaling, while TNFR2 can also activate non-canonical NF-κB signaling, leading to numerous changes in gene expression that drive inflammation, cell proliferation and cell survival. On the other hand, TNFR1 also activates signaling pathways leading to cell death by either apoptosis or necroptosis, depending on the cellular context. A key player in TNFR1- and TNFR2-induced signaling is the RING finger protein TRAF2, which is recruited to both receptors upon their stimulation. TRAF2 exerts multiple receptor-specific functions but also mediates cross-talk between TNFR1 and TNFR2, dictating the outcome of TNF stimulation. In this review, we provide an overview of the positive and negative regulatory role of TRAF2 in different TNFR1 and TNFR2 signaling pathways. We discuss the underlying molecular mechanism of action, distinguishing between TRAF2 scaffold and E3 ubiquitin ligase functions, and the regulation of TRAF2 by specific post-translational modifications. Finally, we elaborate on some possible strategies to modulate TRAF2 function in the context of therapeutic targeting in autoimmunity and cancer.
Copyright © 2016. Published by Elsevier Inc.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Progression of benign prostatic hyperplasia is associated with pro-inflammatory mediators and chronic activation of prostate-infiltrating lymphocytes.

Benign prostatic hyperplasia (BPH) is a common chronic non-malignant condition whose prevalence substantially increases with age. Immune cell infiltration and pro-inflammatory mediators have been implicated in the pathogenesis. Here, we characterized 21 extracellular markers on prostate-infiltrating lymphocytes (PILs) and analyzed expression of 26 soluble proteins in prostate tissue obtained from BPH patients (n = 31). These data were correlated with clinical parameters and compared with peripheral blood mononuclear cells (PBMCs) (n = 10). Increased frequencies of T cells expressing co-inhibitory receptors LAG-3, PD-1, TIM-3 or CTLA-4, and co-stimulatory receptors CD28, OX40 or 4-1BB were observed in BPH tissue compared to PBMCs. These findings are consistent with chronic activation and possible functional exhaustion of PILs that may be further augmented by several identified pro-inflammatory factors, such as IL-8 and MCP-1, promoting inflammation and chemotaxis of immune cells to the prostate. Prostate size and plasma prostate-specific antigen levels positively correlated with IL-8 and MCP-1 concentrations, and frequencies of T cells expressing CTLA-4 and TIM-3. It remains to be established whether the link between inflammation and BPH progression supported by our findings reflects a progressive failure of the immune system leading to decreased immune surveillance and development of prostate cancer.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!