Unlocking the Potential of Purinergic Signaling in Transplantation.

Purinergic signaling has been recognized to play an important role in inflammation, angiogenesis, malignancy, diabetes and neural transmission. Activation of signaling pathways downstream of purinergic receptors may also be implicated in transplantation and related vascular injury. Following transplantation, the pro-inflammatory "danger signal" adenosine triphosphate (ATP) is released from damaged cells and promotes proliferation and activation of a variety of immune cells. Targeting purinergic signaling pathways may promote immunosuppression and ameliorate inflammation. Under pathophysiological conditions, nucleotide-scavenging ectonucleotidases, CD39 and CD73, hydrolyze ATP, ultimately to the anti-inflammatory mediator adenosine. Adenosine suppresses pro-inflammatory cytokine production and is associated with improved graft survival and decreased severity of graft-versus-host disease. Furthermore, purinergic signaling is both directly and indirectly involved in the mechanism of action of several existing immunosuppressive drugs, such as calcineurin inhibitors and mTOR inhibitors. Targeting of purinergic receptor pathways, in particular in the setting of combination therapies, could become a valuable immunosuppressive strategy in transplantation. This review article focuses on the role of the purinergic signaling pathway in transplantation, immunosuppression, and explores possible future applications in clinical practice. This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Patterns of Care in Patients with Metastatic Renal Cell Carcinoma Among a U.S. Payer Population with Commercial or Medicare Advantage Membership.

Several systemic therapies are now approved for first- and second-line treatment of metastatic renal cell carcinoma (mRCC). Although the National Comprehensive Cancer Network (NCCN) guidelines offer physicians evidence-based recommendations for therapy, there are few real-world studies to help inform the utilization of these agents in clinical practice.
To (a) describe the patterns of use associated with systemic therapies for mRCC among Humana members in the United States diagnosed with mRCC, (b) assess consistency with the NCCN guidelines for treatment, and (c) to describe the initial first-line therapy regimen by prescriber specialty and site of care.
This was a retrospective study using Humana’s claims database of commercially insured patients and patients insured by the Medicare Advantage Prescription Drug plan. The study period was from January 1, 2007, to December 31, 2013. Patients with mRCC were identified by ICD-9-CM codes 189.0/189.1 and 196.xx to 199.xx; all patients were between 18 and 89 years of age, had received systemic therapy for their disease, and were followed up for 180 days. Outcome measures included choice of initial systemic therapy, starting and ending doses, first-line treatment persistence and compliance, and choice of second-line therapy. Persistence was measured using time to discontinuation of first-line therapy and proportion of days covered (PDC; the ratio of [total days of drug available minus days of supply of last prescription] to [last prescription date minus first prescription date]). Compliance was measured using the medication possession ratio (MPR; the ratio of [total days supply minus days supply of last prescription] to [last prescription date minus first prescription date]).
A total of 649 patients met all inclusion criteria; 109 were insured by commercial plans and 540 were insured by Medicare. The mean ± SD age of patients was 68.6 ± 9.4 years, and 68.6% were male; Medicare patients were older than commercial patients (71.7 ± 7.4 vs. 56.6 ± 9.1 years, respectively; P < 0.001). The most common comorbidities among the patient population were hypertension, hyperlipidemia, diabetes, and heart disease. The majority of patients (68.6%) received an oral tyrosine kinase inhibitor (TKI) as their first line of therapy: 43.9% received sunitinib, 14.0% received sorafenib, 10.0% received pazopanib, and 0.6% received axitinib. Mean ± SD time to discontinuation of first-line TKI treatment was 169.1 ± 29.5 days with sunitinib, 160.3 ± 41.1 days with pazopanib, and 160.1 ± 41.4 days with sorafenib. Other first-line therapies included inhibitors of mammalian target of rapamycin (mTOR) (19.7%) and the antivascular endothelial growth factor agent bevacizumab (9.4%). Among patients receiving mTOR inhibitors, 14.8% were started on temsirolimus and 4.9% were started on everolimus. The median starting and ending doses were the same for each drug except for sunitinib. Mean ± SD times to discontinuation of temsirolimus, everolimus, and bevacizumab were 171.8 ± 26.2, 137.0 ± 62.2, and 150.8 ± 56.0 days, respectively. Persistence on first-line regimen as measured by PDC was high (PDC ≥ 80%) for 89% of oral therapies and 77% of injectable therapies; first-line compliance was high (MPR ≥ 80%) for 77% of oral therapies and 68% of injectables. Among patients who received second-line therapy, the most common regimen was everolimus (29.2%), followed by bevacizumab (19.8%), temsirolimus (15.6%), and sunitinib (13.6%). Specialty codes obtained from the database provider identified internal medicine specialists and oncologists as the most common prescribers of TKIs and mTOR inhibitors.
Patterns of use were similar for each of the prescribed systemic treatments for mRCC, and the majority of patients were highly persistent and compliant with first-line therapies. Time to treatment discontinuation was slightly longer with oral agents compared with injectable drugs.
This study was supported by GlaxoSmithKline (GSK); pazopanib is an asset of Novartis AG as of March 1, 2015. Miller is an employee of Sanofi with stock/stock options and was an employee of GSK at the time of this study. Stemkowski, Saverno, Lane, and Tao are employees of Comprehensive Health Insights, Humana, which was contracted and paid by GSK to conduct the study. Hackshaw is an employee of Novartis and was an employee of GSK with stock/stock options at the time of this study. Loy is an employee of Humana with stock/stock options. Study concept and design were contributed by Miller, Saverno, Hackshaw, and Loy. Data collection was done by Stemkowski, Lane, and Tao, and data interpretation was performed by Miller, Stemkowski, Lane, Tao, Hackshaw, and Loy. The manuscript was written and revised by Miller, Stemkowski, Saverno, Lane, Tao, Hackshaw, and Loy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Revisiting dosing regimen using PK/PD modeling: the MODEL1 phase I/II trial of docetaxel plus epirubicin in metastatic breast cancer patients.

The MODEL1 trial is the first model-driven phase I/II dose-escalation study of densified docetaxel plus epirubicin administration in metastatic breast cancer patients, a regimen previously known to induce unacceptable life-threatening toxicities. The primary objective was to determine the maximum tolerated dose of this densified regimen. Study of the efficacy was a secondary objective. Her2-negative, hormone-resistant metastatic breast cancer patients were treated with escalating doses of docetaxel plus epirubicin every 2 weeks for six cycles with granulocyte colony stimulating factor support. A total of 16 patients were treated with total doses ranging from 85 to 110 mg of docetaxel plus epirubicin per cycle. Dose escalation was controlled by a non-hematological toxicity model. Dose densification was guided by a model of neutrophil kinetics, able to optimize docetaxel plus epirubicin dosing with respect to pre-defined acceptable levels of hematological toxicity while ensuring maximal efficacy. The densified treatment was safe since hematological toxicity was much lower compared to previous findings, and other adverse events were consistent with those observed with this regimen. The maximal tolerated dose was 100 mg given every 2 weeks. The response rate was 45 %; median progression-free survival was 10.4 months, whereas 54.6 months of median overall survival was achieved. The optimized docetaxel plus epirubicin dosing regimen led to fewer toxicities associated with higher efficacy as compared with standard or empirical densified dosing. This study suggests that model-driven dosage adjustment can lead to improved efficacy-toxicity balance in patients with cancer when several anticancer drugs are combined.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


A Phase I study of indoximod in patients with advanced malignancies.

Indoximod is an oral inhibitor of the indoleamine 2,3-dioxygenase pathway, which causes tumor-mediated immunosuppression. Primary endpoints were maximum tolerated dose (MTD) and toxicity for indoximod in patients with advanced solid tumors. Secondary endpoints included response rates, pharmacokinetics, and immune correlates.
Our 3+3 phase I trial comprised 10 dose levels (200, 300, 400, 600, and 800 mg once/day; 600, 800, 1200, 1600, and 2000 mg twice/day). Inclusion criteria were measurable metastatic solid malignancy, age ≥18 years, and adequate organ/marrow function. Exclusion criteria were chemotherapy ≤ 3 weeks prior, untreated brain metastases, autoimmune disease, or malabsorption.
In 48 patients, MTD was not reached at 2000 mg twice/day. At 200 mg once/day, 3 patients previously treated with checkpoint inhibitors developed hypophysitis. Five patients showed stable disease >6 months. Indoximod plasma AUC and Cmax plateaued above 1200mg. Cmax (~12 μM at 2000 mg twice/day) occurred at 2.9 hours, and half-life was 10.5 hours. C reactive protein (CRP) levels increased across multiple dose levels.
Indoximod was safe at doses up to 2000 mg orally twice/day. Best response was stable disease >6 months in 5 patients. Induction of hypophysitis, increased tumor antigen autoantibodies and CRP levels were observed.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


The complete mitochondrial genome sequence of the Canada goose (Branta canadensis).

The Canada goose (Branta canadensis) entire mitochondrial genome of a bird from Western Pennsylvania has 16,760 bp (GenBank accession number NC 007011) and has been analyzed for gene locations, length, start codon and stop codons. This genome from a bird harvested during the non-migratory season is the REFSEQ and the haplotype is designated GCC-A. There are two rRNAs, 22 tRNAs, 13 protein-coding regions, and 1 displacement loop region. The base composition of mtDNA was A (30.2%), G (15.1%), C (32.1%), and T (22.6%), so the percentage of A and T (52.8%) was slightly higher than G and C. All genes except ND6 and eight tRNA genes (Gln, Ala, Asn, Cys, Tyr, Ser, Pro and Glu) are encoded on the heavy strand. The gene arrangement is the same as most birds and differs from mammals by an inversion of the mtDNA at the connection between the D-loop and the ND5 junctions.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!