In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors.

Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs) targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX), monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT) were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Efficient mRNA-Based Genetic Engineering of Human NK Cells with High-Affinity CD16 and CCR7 Augments Rituximab-Induced ADCC against Lymphoma and Targets NK Cell Migration toward the Lymph Node-Associated Chemokine CCL19.

For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Prospects and progress of antibody-drug conjugates in solid tumor therapies.

Antibody-drug conjugates (ADCs) for targeted chemotherapy have evolved in the past 2-3 decades to become a validated clinical cancer therapy modality. While considerable strides have been made in treating hematological tumors, challenges remain in the more difficult-to-treat solid cancers. Areas covered: The current model for a successful ADC uses a highly-potent cytotoxic drug as the payload, with stringent linker requirements and limited substitutions. In solid tumor treatment, a number of ADCs have not progressed beyond Phase I clinical trials, indicating a need to optimize additional factors governing translational success. In this regard, insights from mathematical modeling provide a number of pointers relevant to target antigen and antibody selection. Together with the choice of targets, these can be expected to complement the gains made in ADC design towards the generation of better therapeutics. Expert opinion: While highly potent microtubule inhibitors continue to dominate the current ADC landscape, there are promising data with other drugs, linkers, and targets that suggest a more flexible model for a successful ADC is evolving. Such changes will undoubtedly lead to the consideration of new targets and constructs to overcome some of the unique natural barriers that impede the delivery of cytotoxic agents in solid tumor.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Benefit to neoadjuvant anti-human epidermal growth factor receptor 2 (HER2)-targeted therapies in HER2-positive primary breast cancer is independent of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) status.

Assessment of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) might be an important tool in identifying human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients unlikely to derive benefit from anti-HER2 therapies. However, studies to date have failed to demonstrate its predictive role in any treatment setting.
Prospectively collected baseline core biopsies from 429 early-stage HER2-positive breast cancer patients treated with trastuzumab, lapatinib, or their combination in the Neo-ALTTO study were stained using two anti-PTEN monoclonal antibodies (CST and DAKO). The association of PTEN status and PI3K pathway activation (defined as either PTEN loss and/or PIK3CA mutation) with total pathological complete response (tpCR) at surgery, event-free survival (EFS), and overall survival (OS) was evaluated.
PTEN loss was observed in 27% and 29% of patients (all arms, n = 361 and n = 363) for CST and DAKO, respectively. PTEN loss was more frequently observed in hormone receptor (HR)-negative (33% and 36% with CST and DAKO, respectively) compared with HR-positive tumours (20% and 22% with CST and DAKO, respectively). No significant differences in tpCR rates were observed according to PTEN status. PI3K pathway activation was found in 47% and 48% of patients (all arms, n = 302 and n = 301) for CST and DAKO, respectively. Similarly, tpCR rates were not significantly different for those with or without PI3K pathway activation. Neither PTEN status nor PI3K pathway activation were predictive of tpCR, EFS, or OS, independently of treatment arm or HR status. High inter-antibody and inter-observer agreements were found (>90%). Modification of scoring variables significantly affected the correlation between PTEN and HR status but not with tpCR.
These data show that PTEN status determination is not a useful biomarker to predict resistance to trastuzumab and lapatinib-based therapies. The lack of standardization of PTEN status determination may influence correlations between expression and relevant clinical end points.
This trial is registered with ClinicalTrials.gov: NCT00553358.
© The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: [email protected].

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


MET gene copy number alterations and expression of MET and hepatocyte growth factor are potential biomarkers in angiosarcomas and undifferentiated pleomorphic sarcomas.

Soft tissue sarcomas are a heterogeneous group of tumors with many different subtypes. In 2014 an estimated 12,020 newly diagnosed cases and 4,740 soft tissue sarcoma related deaths can be expected in the United States. Many soft tissue sarcomas are associated with poor prognosis and therapeutic options are often limited. The evolution of precision medicine has not yet fully reached the clinical treatment of sarcomas since therapeutically tractable genetic changes have not been comprehensively studied so far. We analyzed a total of 484 adult-type malignant mesenchymal tumors by MET fluorescence in situ hybridization and MET and hepatocyte growth factor immunohistochemistry. Eleven different entities were included, among them the most common and clinically relevant subtypes and tumors with specific translocations or complex genetic changes. MET protein expression was observed in 2.6% of the cases, all of which were either undifferentiated pleomorphic sarcomas or angiosarcomas, showing positivity rates of 14% and 17%, respectively. 6% of the tumors showed hepatocyte growth factor overexpression, mainly seen in undifferentiated pleomorphic sarcomas and angiosarcomas, but also in clear cell sarcomas, malignant peripheral nerve sheath tumors, leiomyosarcomas and gastrointestinal stromal tumors. MET and hepatocyte growth factor overexpression were significantly correlated and may suggest an autocrine activation in these tumors. MET FISH amplification and copy number gain were present in 4% of the tumors (15/413). Two samples, both undifferentiated pleomorphic sarcomas, fulfilled the criteria for high level amplification of MET, one undifferentiated pleomorphic sarcoma reached an intermediate level copy number gain, and 12 samples of different subtypes were categorized as low level copy number gains for MET. Our findings indicate that angiosarcomas and undifferentiated pleomorphic sarcomas rather than other frequent adult-type sarcomas should be enrolled in screening programs for clinical trials with MET inhibitors. The screening methods should include both in situ hybridization and immunohistochemistry.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!