Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial.

Treatment options for patients with relapsed or refractory lymphoma and multiple myeloma are limited. CUDC-907 is an oral, first-in-class, small molecule that is designed to inhibit both histone deacetylase (HDAC) and PI3K enzymes, which are members of common oncogenic pathways in haematological malignancies. We aimed to assess overall safety and preliminary activity in this dose-escalation study of CUDC-907 monotherapy in patients with relapsed or refractory lymphoma and multiple myeloma.
This open-label, first-in-man, phase 1 trial recruited adult patients (aged ≥18 years) with lymphoma or multiple myeloma who were refractory to or had relapsed after two or more previous regimens, from four US cancer centres. CUDC-907 was orally administered in a standard 3 + 3 dose-escalation design at four different dosing schedules, to which participants were sequentially assigned as follows: once daily, intermittently (twice or three times weekly; simultaneous enrolment), and daily for 5 days followed by a 2-day break (5/2), in 21-day cycles. Dosing started at 30 mg for the once-daily schedule and 60 mg for other schedules, escalating in 30 mg increments. Patients continued to receive CUDC-907 until disease progression or until other treatment discontinuation criteria were met. The primary objective was to determine the maximum tolerated dose (MTD) and recommended phase 2 dose, assessed in patients who received at least 66% of cycle 1 doses without modification and those who had a dose-limiting toxicity (DLT) in cycle 1 irrespective of dose modification. We assessed safety in all patients who received at least one dose of study drug. This ongoing trial is registered at ClinicalTrials.gov, number NCT01742988.
Between Jan 23, 2013, and July 27, 2015, we enrolled 44 patients, of whom ten were sequentially assigned to CUDC-907 once-daily (MTD 60 mg), 12 to twice-weekly (MTD 150 mg), 15 to three-times-weekly (MTD 150 mg), and seven to the 5/2 dosing schedule (MTD 60 mg). 37 (84%) patients had discontinued study drug as a result of progressive disease or clinical signs of progressive disease at the data cutoff. Four DLTs occurred in three of 40 DLT-evaluable patients (diarrhoea and hyperglycaemia in one patient on 60 mg once daily, hyperglycaemia in one patient on 150 mg twice weekly, and diarrhoea in one patient on 150 mg three times weekly); no DLTs were reported in patients on the 5/2 schedule. Grade 3 or worse adverse events occurred in 19 (43%) of 44 patients, the most common of which were thrombocytopenia (in nine [20%] of 44 patients), neutropenia (three [7%]), and hyperglycaemia (three [7%]). 11 (25%) of 44 patients had serious adverse events, three of which were regarded as treatment related (epistaxis and the DLTs of diarrhoea and hyperglycaemia). Adverse events led to dose reductions in six (14%) patients and treatment discontinuation in seven (16%). Five (14%) of 37 response-evaluable patients achieved an objective response (two complete responses and three partial responses). All five responses occurred in the subgroup of patients with diffuse large B-cell lymphoma (DLBCL; n=9), and three occurred in those with transformed follicular lymphoma DLBCL (n=5). 21 (57%) of 37 response-evaluable patients had stable disease, including those with DLBCL, Hodgkin’s lymphoma, and multiple myeloma. On the basis of these findings, we selected CUDC-907 60 mg on the 5/2 dosing schedule as the recommended phase 2 dose.
The safety and tolerability profile of CUDC-907 and the promising preliminary evidence of response support continued development of CUDC-907 at the 60 mg 5/2 dosing schedule, alone and in combination with other therapies. A dose-expansion trial of this dose in patients with refractory and relapsed DLBCL in particular, is ongoing.
Curis, Inc, and the Leukemia and Lymphoma Society.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.

Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Brigatinib, an anaplastic lymphoma kinase inhibitor, abrogates activity and growth in ALK-positive neuroblastoma cells, Drosophila and mice.

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor which has been implicated in numerous solid and hematologic cancers. ALK mutations are reported in about 5-7% of neuroblastoma cases but the ALK-positive percentage increases significantly in the relapsed patient population. Crizotinib, the first clinically approved ALK inhibitor for the treatment of ALK-positive lung cancer has had less dramatic responses in neuroblastoma. Here we investigate the efficacy of a second-generation ALK inhibitor, brigatinib, in a neuroblastoma setting. Employing neuroblastoma cell lines, mouse xenograft and Drosophila melanogaster model systems expressing different constitutively active ALK variants, we show clear and efficient inhibition of ALK activity by brigatinib. Similar abrogation of ALK activity was observed in vitro employing a set of different constitutively active ALK variants in biochemical assays. These results suggest that brigatinib is an effective inhibitor of ALK kinase activity in ALK addicted neuroblastoma that should be considered as a potential future therapeutic option for ALK-positive neuroblastoma patients alone or in combination with other treatments.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake.

Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.
© 2015 The Authors. Traffic published by John Wiley & Sons Ltd.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma.

Background Grade 2 gliomas occur most commonly in young adults and cause progressive neurologic deterioration and premature death. Early results of this trial showed that treatment with procarbazine, lomustine (also called CCNU), and vincristine after radiation therapy at the time of initial diagnosis resulted in longer progression-free survival, but not overall survival, than radiation therapy alone. We now report the long-term results. Methods We included patients with grade 2 astrocytoma, oligoastrocytoma, or oligodendroglioma who were younger than 40 years of age and had undergone subtotal resection or biopsy or who were 40 years of age or older and had undergone biopsy or resection of any of the tumor. Patients were stratified according to age, histologic findings, Karnofsky performance-status score, and presence or absence of contrast enhancement on preoperative images. Patients were randomly assigned to radiation therapy alone or to radiation therapy followed by six cycles of combination chemotherapy. Results A total of 251 eligible patients were enrolled from 1998 through 2002. The median follow-up was 11.9 years; 55% of the patients died. Patients who received radiation therapy plus chemotherapy had longer median overall survival than did those who received radiation therapy alone (13.3 vs. 7.8 years; hazard ratio for death, 0.59; P=0.003). The rate of progression-free survival at 10 years was 51% in the group that received radiation therapy plus chemotherapy versus 21% in the group that received radiation therapy alone; the corresponding rates of overall survival at 10 years were 60% and 40%. A Cox model identified receipt of radiation therapy plus chemotherapy and histologic findings of oligodendroglioma as favorable prognostic variables for both progression-free and overall survival. Conclusions In a cohort of patients with grade 2 glioma who were younger than 40 years of age and had undergone subtotal tumor resection or who were 40 years of age or older, progression-free survival and overall survival were longer among those who received combination chemotherapy in addition to radiation therapy than among those who received radiation therapy alone. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT00003375 .).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!