Abilita Bio, Inc. Awarded NCI Phase-I SBIR Grant to Develop Therapeutic Antibodies Targeting Metastatic Breast Cancer

On September 20, 2016 Abilita Bio, Inc. reported that it has been awarded a Phase I Small Business Innovation Research (SBIR) grant from the National Cancer Institute (NCI) to develop therapeutic antibodies targeting G Protein-Coupled Receptors (GPCRs) involved in the metastasis of breast cancer, including prostaglandin E2 receptor 2 (EP2), prostaglandin E2 receptor 4 (EP4), and C-C chemokine receptor 7 (CCR7) (Press release, Abilita Bio, SEP 20, 2016, View Source [SID:SID1234515259]). With an estimated 1.7 million new cases each year, breast cancer is the most common cancer among women worldwide. It is also the leading cause of cancer death among women, taking the lives of over 450,000 annually. In addition to the patients who are diagnosed with metastatic disease at initial diagnosis, nearly 30 percent of women diagnosed with early breast cancer will eventually develop metastatic disease.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The chemokine receptor CCR7 is highly expressed in human breast cancer cells, malignant breast tumors and metastases, and overexpression correlates with larger primary tumors, deeper lymphatic invasion and poor prognosis. EP2 and EP4 receptors are positively correlated with increased breast cancer metastasis and have been implicated in suppression of the antitumor activity of natural killer cells. Given the body of evidence that implicates CCR7, EP2 and EP4 in cancer metastasis and immunosuppression, targeted inhibitory antibody therapeutics may address unmet needs in breast cancer therapy.

GPCRs have been proven to be challenging targets for antibody discovery due to low cell surface expression, lack of immunogenicity and marginal conformational stability when removed from the membrane. To address these limitations, Abilita Bio will leverage its directed evolution technology to rapidly generate enhanced GPCR antigens called EMPs (Enabled Membrane Proteins) that can be used for discovery and development of therapeutic antibodies targeting CCR7, EP2 and EP4 for the prevention or treatment of metastatic breast cancer.

"Antibody therapeutics against GPCRs have tremendous potential in treating cancer due to their exquisite specificity, high affinity and low toxicity relative to small molecules. However, despite intense efforts to develop them, only one GPCR targeted therapeutic antibody has gained approval in the world," said Mauro Mileni, Ph.D., Abilita Bio’s CEO and principal investigator on this grant. "We expect the use of EMPs as antigens to dramatically increase the probability of discovering new therapeutic antibodies to treat serious diseases, while reducing costs and development timelines."

About GPCRs
G Protein-Coupled Receptors (GPCRs) represent the largest class of membrane proteins in humans, and bind almost all of the known neurotransmitters and hormones that are released synaptically or secreted into the circulatory system. GPCRs are expressed in all tissue types and organs, and are associated with many diseases. The GPCR super-family includes approximately 400 medically relevant targets. To date more than 110 receptors have been exploited as drug targets, while most of the remaining receptors are orphan (130) or under-characterized.

Mirna Therapeutics Halts Phase 1 Clinical Study of MRX34

On September 20, 2016 Mirna Therapeutics, Inc. (Nasdaq:MIRN), a clinical stage biopharmaceutical company, reported its decision to close the ongoing Phase 1 study of MRX34, its investigational microRNA therapy for multiple cancers (Press release, Mirna Therapeutics, SEP 20, 2016, View Source [SID:SID1234515258]). The Company voluntarily halted enrollment and dosing in the clinical study following multiple immune-related severe adverse events (SAE) observed in patients dosed with MRX34 over the course of the trial.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Patient safety is the primary objective of our MRX34 Phase 1 clinical trial," said President and CEO Paul Lammers, M.D., M.Sc. "We made the difficult decision to close the study after a fifth, immune-related serious adverse event was recently reported by one of our clinical sites. This patient experienced severe (Grade 4) cytokine release syndrome and is undergoing treatment. We have notified the U.S. FDA and the Korean FDA of our decision and are in the process of closing the trial."

Mirna also announced that it will not be initiating a translational medicine study of MRX34 in melanoma patients, planned to begin later this year. The Company will be further analyzing its full preclinical and clinical data set, and will discuss with its advisors, as well as the FDA, possible future development of MRX34 and will provide updates when appropriate.

Puma Biotechnology Announces U.S. FDA Acceptance of New Drug Application for PB272 (Neratinib) for Extended Adjuvant Treatment of HER2-Positive Early Stage Breast Cancer

On September 20, 2016 Puma Biotechnology, Inc. (NYSE: PBYI), a biopharmaceutical company, reported that the U.S. Food and Drug Administration (FDA) has accepted for review the New Drug Application (NDA) for its lead product candidate PB272 (neratinib) for the extended adjuvant treatment of patients with early stage HER2-overexpressed/amplified breast cancer who have received prior adjuvant trastuzumab (Herceptin)-based therapy (Press release, Puma Biotechnology, SEP 20, 2016, View Source [SID:SID1234515251]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The FDA acceptance of our NDA is an important regulatory milestone," said Alan H. Auerbach, Chief Executive Officer and President of Puma. "Although the use of trastuzumab in the adjuvant setting has led to a reduction in disease recurrence in patients with early stage HER2-positive breast cancer, there remains an unmet clinical need to further reduce the risk of recurrence and improve outcome following trastuzumab therapy. We believe that neratinib may be able to provide this type of improvement to further help patients with this disease. We look forward to working with the FDA during their review of this submission."

The submission is supported by the results of the ExteNET Phase III study, in which treatment with neratinib resulted in a 33% reduction of risk of invasive disease recurrence or death versus placebo (hazard ratio = 0.67, p = 0.009). The 2-year invasive disease free survival (DFS) rate for the neratinib arm was 93.9% and the 2-year invasive DFS rate for the placebo arm was 91.6%. For the pre-defined subgroup of patients with hormone receptor positive disease, the results of the trial demonstrated that treatment with neratinib resulted in a 49% reduction of risk of invasive disease recurrence or death versus placebo (hazard ratio = 0.51, p = 0.001). For the patients with hormone receptor positive disease, the 2-year invasive DFS rate for the neratinib arm was 95.4% and the 2-year invasive DFS rate for the placebo arm was 91.2%.

Results of the study were published online in The Lancet Oncology on February 10, 2016.

The most frequently observed adverse event for the neratinib-treated patients was diarrhea, with approximately 39.9% of the neratinib-treated patients experiencing grade 3 or higher diarrhea (1 patient (0.1%) had grade 4 diarrhea). Patients who received neratinib in the ExteNET trial did not receive any prophylaxis with antidiarrheal agents to prevent the neratinib-related diarrhea. In patients with HER2-positive early stage breast cancer who have previously been treated with adjuvant trastuzumab and received anti-diarrheal prophylaxis with loperamide, interim results of a Phase II study of neratinib monotherapy demonstrated that treatment with prophylactic loperamide reduced the rate of grade 3 or higher diarrhea to between 13.0% and 18.5%.

About ExteNET

The ExteNET trial is a double-blind, placebo-controlled, Phase III trial of neratinib versus placebo after adjuvant treatment with trastuzumab (Herceptin) in women with early stage HER2-positive breast cancer. The trial randomized 2,840 patients in 41 countries with early-stage HER2-positive breast cancer who had undergone surgery and adjuvant treatment with trastuzumab. After completion of adjuvant treatment with trastuzumab, patients were randomized to receive extended adjuvant treatment with either neratinib or placebo for a period of one year. Patients were then followed for recurrent disease, ductal carcinoma in situ (DCIS), or death for a period of two years after randomization in the trial. The primary endpoint of the trial was invasive DFS.

Kite Pharma Announces Exclusive License with the National Institutes of Health for Multiple Neoantigen Directed T-Cell Receptor (TCR) Product Candidates to Treat Solid Tumors Expressing Mutated KRAS

On September 20, 2016 Kite Pharma, Inc. (Nasdaq:KITE), a clinical-stage biopharmaceutical company focused on developing engineered autologous T-cell therapy (eACT) products for the treatment of cancer, reported that the Company has entered into an exclusive, worldwide license with the National Institutes of Health (NIH) for intellectual property related to multiple T-cell receptor (TCR) based product candidates for the treatment of tumors expressing mutated KRAS antigens (Press release, Kite Pharma, SEP 20, 2016, View Source [SID:SID1234515250]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Kite expects the first of the licensed KRAS product candidates to enter clinical study in 2016 as part of the Company’s Cooperative Research and Development Agreement (CRADA) with the National Cancer Institute (NCI) under the direction of Steven A. Rosenberg, M.D., Ph.D., Chief of the Surgery Branch at the NCI.

KRAS is one of the most commonly mutated genes in all of human cancer and is involved in a broad range of solid tumors, such as pancreatic, colorectal, and lung cancer, for which there are significant unmet medical needs.

"Neoantigens are uniquely present in tumors but absent in healthy tissue which makes them attractive targets for using our TCR technology," stated Arie Belldegrun, M.D., FACS, Kite’s Chairman, President and Chief Executive Officer. "Kite has taken an important step toward building the first therapeutic franchise of its kind for cancers driven by KRAS mutations and has further expanded its efforts in building a TCR portfolio across key classes of antigens, including cancer testis and viral antigens."

Pursuant to the terms of the license agreement, NIH will receive from Kite an upfront payment and certain clinical, regulatory, and sales milestone payments, as well as royalties on net sales of products covered by the license.

European Medicines Agency Validates Bristol-Myers Squibb’s Type II Variation Application for Opdivo (nivolumab) in Advanced Form of Bladder Cancer

On September 20, 2016 Bristol-Myers Squibb Company (NYSE:BMY) reported that the European Medicines Agency (EMA) validated its type II variation application, which seeks to extend the current indications for Opdivo to include the treatment of locally advanced unresectable or metastatic urothelial carcinoma (mUC) in adults after failure of prior platinum-containing therapy (Press release, Bristol-Myers Squibb, SEP 20, 2016, View Source [SID:SID1234515230]). Validation of the application confirms the submission is complete and begins the EMA’s centralized review process.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The high frequency of metastatic urothelial carcinoma and its relapsing nature highlight the substantial need for new treatment approaches with high and durable responses," said Fouad Namouni, M.D., head of development, Oncology, Bristol-Myers Squibb. "We look forward to working with the EMA to potentially extend the use of Opdivo and bring the science of Immuno-Oncology to help patients in Europe fight this difficult-to-treat, advanced form of bladder cancer."

The application primarily included data from CheckMate -275, a Phase 2, open-label, single-arm study assessing the safety and efficacy of Opdivo in patients with locally advanced unresectable or mUC that has progressed after a platinum-containing therapy. The primary endpoint in CheckMate -275 trial is objective response rate, and additional efficacy measures included durability of response and overall survival. Data from this study will be presented at the 2016 European Society for Medical Oncology Congress.

About Bladder Cancer

Bladder cancer, which typically begins in the cells that line the inside of the bladder, is the fifth most commonly diagnosed cancer in Europe, with an estimated 151,000 new cases diagnosed per year and over 52,000 deaths per year. Urothelial carcinoma is the most common type of bladder cancer, accounting for approximately 90% of cases. The majority of bladder cancers are diagnosed at an early stage, but rates of recurrence and progression are high, and approximately 78% of patients will experience a recurrence within five years. Survival rates vary depending on the stage and type of the cancer and when it is diagnosed. For Stage IV bladder cancer, the five-year survival rate is 15%.

Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research

At Bristol-Myers Squibb, we have a vision for the future of cancer care that is focused on Immuno-Oncology, now considered a major treatment choice alongside surgery, radiation, chemotherapy and targeted therapies for certain types of cancer.

We have a comprehensive clinical portfolio of investigational and approved Immuno-Oncology agents, many of which were discovered and developed by our scientists. Our ongoing Immuno-Oncology clinical program is looking at broad patient populations, across multiple solid tumors and hematologic malignancies, and lines of therapy and histologies, with the intent of powering our trials for overall survival and other important measures like durability of response. We pioneered the research leading to the first regulatory approval for the combination of two Immuno-Oncology agents, and continue to study the role of combinations in cancer.

We are also investigating other immune system pathways in the treatment of cancer including CTLA-4, CD-137, KIR, SLAMF7, PD-1, GITR, CSF1R, IDO, and LAG-3. These pathways may lead to potential new treatment options – in combination or monotherapy – to help patients fight different types of cancers.

Our collaboration with academia, as well as small and large biotech companies, to research the potential Immuno-Oncology and non-Immuno-Oncology combinations, helps achieve our goal of providing new treatment options in clinical practice.

At Bristol-Myers Squibb, we are committed to changing survival expectations in hard-to-treat cancers and the way patients live with cancer.

About Opdivo

Cancer cells may exploit "regulatory" pathways, such as checkpoint pathways, to hide from the immune system and shield the tumor from immune attack. Opdivo is a PD-1 immune checkpoint inhibitor that binds to the checkpoint receptor PD-1 expressed on activated T-cells, and blocks the binding of PD-L1 and PD-L2, preventing the PD-1 pathway’s suppressive signaling on the immune system, including the interference with an anti-tumor immune response.

Opdivo’s broad global development program is based on Bristol-Myers Squibb’s understanding of the biology behind Immuno-Oncology. Our company is at the forefront of researching the potential of Immuno-Oncology to extend survival in hard-to-treat cancers. This scientific expertise serves as the basis for the Opdivo development program, which includes a broad range of Phase 3 clinical trials evaluating overall survival as the primary endpoint across a variety of tumor types. The Opdivo trials have also contributed toward the clinical and scientific understanding of the role of biomarkers and how patients may benefit from Opdivo across the continuum of PD-L1 expression. To date, the Opdivo clinical development program has enrolled more than 18,000 patients.

Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world in July 2014, and currently has regulatory approval in 54 countries including the United States, Japan, and in the European Union.

U.S. FDA APPROVED INDICATIONS FOR OPDIVO

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and post- transplantation brentuximab vedotin. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Please refer to the end of the Important Safety Information for a brief description of the patient populations studied in the CheckMate trials.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune- mediated reactions may involve any organ system; however, the most common severe immune- mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

Immune-mediated pneumonitis, including fatal cases, occurred with OPDIVO treatment. Across the clinical trial experience with solid tumors, fatal immune-mediated pneumonitis occurred with OPDIVO. In addition, in CheckMate 069, there were six patients who died without resolution of abnormal respiratory findings. Monitor patients for signs with radiographic imaging and symptoms of pneumonitis. Administer corticosteroids for Grade 2 or greater pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In CheckMate 069 and 067, immune-mediated pneumonitis occurred in 6% (25/407) of patients receiving OPDIVO with YERVOY: Fatal (n=1), Grade 3 (n=6), Grade 2 (n=17), and Grade 1 (n=1). In CheckMate 037, 066, and 067, immune-mediated pneumonitis occurred in 1.8% (14/787) of patients receiving OPDIVO: Grade 3 (n=2) and Grade 2 (n=12). In CheckMate 057, immune- mediated pneumonitis, including interstitial lung disease, occurred in 3.4% (10/287) of patients: Grade 3 (n=5), Grade 2 (n=2), and Grade 1 (n=3). In CheckMate 025, pneumonitis, including interstitial lung disease, occurred in 5% (21/406) of patients receiving OPDIVO and 18% (73/397) of patients receiving everolimus. Immune-mediated pneumonitis occurred in 4.4% (18/406) of patients receiving OPDIVO: Grade 4 (n=1), Grade 3 (n=4), Grade 2 (n=12), and Grade 1 (n=1). In CheckMate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 4.9% (13/263) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 3.4% (9/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=8).

Immune-Mediated Colitis

Immune-mediated colitis can occur with OPDIVO treatment. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. As a single agent, withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon restarting OPDIVO. When administered with YERVOY, withhold OPDIVO for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis upon restarting OPDIVO. In CheckMate 069 and 067, diarrhea or colitis occurred in 56% (228/407) of patients receiving OPDIVO with YERVOY. Immune-mediated colitis occurred in 26% (107/407) of patients: Grade 4 (n=2), Grade 3 (n=60), Grade 2 (n=32), and Grade 1 (n=13). In CheckMate 037, 066, and 067, diarrhea or colitis occurred in 31% (242/787) of patients receiving OPDIVO. Immune-mediated colitis occurred in 4.1% (32/787) of patients: Grade 3 (n=20), Grade 2 (n=10), and Grade 1 (n=2). In CheckMate 057, diarrhea or colitis occurred in 17% (50/287) of patients receiving OPDIVO. Immune-mediated colitis occurred in 2.4% (7/287) of patients: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=2). In CheckMate 025, diarrhea or colitis occurred in 25% (100/406) of patients receiving OPDIVO and 32% (126/397) of patients receiving everolimus. Immune-mediated diarrhea or colitis occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 3 (n=5), Grade 2 (n=7), and Grade 1 (n=1). In CheckMate 205 and 039, diarrhea or colitis occurred in 30% (80/263) of patients receiving OPDIVO. Immune-mediated diarrhea (Grade 3) occurred in 1.1% (3/263) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Immune-Mediated Hepatitis

Immune-mediated hepatitis can occur with OPDIVO treatment. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune- mediated hepatitis. In CheckMate 069 and 067, immune-mediated hepatitis occurred in 13% (51/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=8), Grade 3 (n=37), Grade 2 (n=5), and Grade 1 (n=1). In CheckMate 037, 066, and 067, immune-mediated hepatitis occurred in 2.3% (18/787) of patients receiving OPDIVO: Grade 4 (n=3), Grade 3 (n=11), and Grade 2 (n=4). In CheckMate 057, one patient (0.3%) developed immune-mediated hepatitis. In CheckMate 025, there was an increased incidence of liver test abnormalities compared to baseline in AST (33% vs 39%), alkaline phosphatase (32% vs 32%), ALT (22% vs 31%), and total bilirubin (9% vs 3.5%) in the OPDIVO and everolimus arms, respectively. Immune-mediated hepatitis requiring systemic immunosuppression occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=5) and Grade 2 (n=1). In CheckMate 205 and 039, hepatitis occurred in 11% (30/263) of patients receiving OPDIVO. Immune-mediated hepatitis occurred in 3.4% (9/263): Grade 3 (n=7) and Grade 2 (n=2).

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Dermatitis

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Neuropathies

In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

Hypophysitis, adrenal insufficiency, thyroid disorders, and type 1 diabetes mellitus can occur with OPDIVO treatment. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency during and after treatment, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Administer insulin for type 1 diabetes. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In CheckMate 069 and 067, hypophysitis occurred in 9% (36/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=8), Grade 2 (n=25), and Grade 1 (n=3). In CheckMate 037, 066, and 067, hypophysitis occurred in 0.9% (7/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=2). In CheckMate 025, hypophysitis occurred in 0.5% (2/406) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1). In CheckMate 069 and 067, adrenal insufficiency occurred in 5% (21/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=1), Grade 3 (n=7), Grade 2 (n=11), and Grade 1 (n=2). In CheckMate 037, 066, and 067, adrenal insufficiency occurred in 1% (8/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=5), and Grade 1 (n=1). In CheckMate 057, 0.3% (1/287) of OPDIVO-treated patients developed adrenal insufficiency. In CheckMate 025, adrenal insufficiency occurred in 2.0% (8/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=4), and Grade 1 (n=1). In CheckMate 205 and 039, adrenal insufficiency (Grade 2) occurred in 0.4% (1/263) of patients receiving OPDIVO. In CheckMate 069 and 067, hypothyroidism or thyroiditis occurred in 22% (89/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=6), Grade 2 (n=47), and Grade 1 (n=36). Hyperthyroidism occurred in 8% (34/407) of patients: Grade 3 (n=4), Grade 2 (n=17), and Grade 1 (n=13). In CheckMate 037, 066, and 067, hypothyroidism or thyroiditis occurred in 9% (73/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=37), Grade 1 (n=35). Hyperthyroidism occurred in 4.4% (35/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=12), and Grade 1 (n=22). In CheckMate 057, Grade 1 or 2 hypothyroidism, including thyroiditis, occurred in 7% (20/287) and elevated thyroid stimulating hormone occurred in 17% of patients receiving OPDIVO. Grade 1 or 2 hyperthyroidism occurred in 1.4% (4/287) of patients. In CheckMate 025, thyroid disease occurred in 11% (43/406) of patients receiving OPDIVO, including one Grade 3 event, and in 3.0% (12/397) of patients receiving everolimus. Hypothyroidism/thyroiditis occurred in 8% (33/406) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=17), and Grade 1 (n=14). Hyperthyroidism occurred in 2.5% (10/406) of patients receiving OPDIVO: Grade 2 (n=5) and Grade 1 (n=5). In CheckMate 205 and 039, hypothyroidism/thyroiditis occurred in 12% (32/263) of patients receiving OPDIVO: Grade 2 (n=18) and Grade 1: (n=14). Hyperthyroidism occurred in 1.5% (4/263) of patients receiving OPDIVO: Grade 2: (n=3) and Grade 1 (n=1). In CheckMate 069 and 067, diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/407) of patients: Grade 4 (n=3), Grade 3 (n=1), Grade 2 (n=1), and Grade 1 (n=1). In CheckMate 037, 066, and 067, diabetes mellitus or diabetic ketoacidosis occurred in 0.8% (6/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=1). In CheckMate 025, hyperglycemic adverse events occurred in 9% (37/406) patients.

Diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=1). In CheckMate 205 and 039, diabetes mellitus occurred in 0.8% (2/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1).

In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

Immune-mediated nephritis can occur with OPDIVO treatment. Monitor patients for elevated serum creatinine prior to and periodically during treatment. For Grade 2 or 3 increased serum creatinine, withhold and administer corticosteroids; if worsening or no improvement occurs, permanently discontinue. Administer corticosteroids for Grade 4 serum creatinine elevation and permanently discontinue. In CheckMate 069 and 067, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients: Grade 4 (n=4), Grade 3 (n=3), and Grade 2 (n=2). In CheckMate 037, 066, and 067, nephritis and renal dysfunction of any grade occurred in 5% (40/787) of patients receiving OPDIVO. Immune-mediated nephritis and renal dysfunction occurred in 0.8% (6/787) of patients: Grade 3 (n=4) and Grade 2 (n=2). In CheckMate 057, Grade 2 immune-mediated renal dysfunction occurred in 0.3% (1/287) of patients receiving OPDIVO. In CheckMate 025, renal injury occurred in 7% (27/406) of patients receiving OPDIVO and 3.0% (12/397) of patients receiving everolimus. Immune-mediated nephritis and renal dysfunction occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 5 (n=1), Grade 4 (n=1), Grade 3 (n=5), and Grade 2 (n=6). In CheckMate 205 and 039, nephritis and renal dysfunction occurred in 4.9% (13/263) of patients treated with OPDIVO. This included one reported case (0.3%) of Grade 3 autoimmune nephritis.

Immune-Mediated Rash

Immune-mediated rash can occur with OPDIVO treatment. Severe rash (including rare cases of fatal toxic epidermal necrolysis) occurred in the clinical program of OPDIVO. Monitor patients for rash. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4. In CheckMate 069 and 067, immune-mediated rash occurred in 22.6% (92/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=15), Grade 2 (n=31), and Grade 1 (n=46). In CheckMate 037, 066, and 067, immune-mediated rash occurred in 9% (72/787) of patients receiving OPDIVO: Grade 3 (n=7), Grade 2 (n=15), and Grade 1 (n=50). In CheckMate 057, immune-mediated rash occurred in 6% (17/287) of patients receiving OPDIVO including four Grade 3 cases. In CheckMate 025, rash occurred in 28% (112/406) of patients receiving OPDIVO and 36% (143/397) of patients receiving everolimus. Immune- mediated rash, defined as a rash treated with systemic or topical corticosteroids, occurred in 7% (30/406) of patients receiving OPDIVO: Grade 3 (n=4), Grade 2 (n=7), and Grade 1 (n=19). In CheckMate 205 and 039, rash occurred in 22% (58/263) of patients receiving OPDIVO. Immune-mediated rash occurred in 7% (18/263) of patients on OPDIVO: Grade 3 (n=4), Grade 2 (n=3), and Grade 1 (n=11).

Immune-Mediated Encephalitis

Immune-mediated encephalitis can occur with OPDIVO treatment. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In CheckMate 067, encephalitis was identified in one patient (0.2%) receiving OPDIVO with YERVOY. In CheckMate 057, fatal limbic encephalitis occurred in one patient (0.3%) receiving OPDIVO. In CheckMate 205 and 039, encephalitis occurred in 0.8% (2/263) of patients after allogeneic HSCT after OPDIVO.

Other Immune-Mediated Adverse Reactions

Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. In < 1.0% of patients receiving OPDIVO, the following clinically significant, immune-mediated adverse reactions occurred: uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, and sarcoidosis. Across clinical trials of OPDIVO as a single agent administered at doses of 3 mg/kg and 10 mg/kg, additional clinically significant, immune- mediated adverse reactions were identified: motor dysfunction, vasculitis, and myasthenic syndrome.

Infusion Reactions

Severe infusion reactions have been reported in <1.0% of patients in clinical trials of OPDIVO. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In CheckMate 069 and 067, infusion- related reactions occurred in 2.5% (10/407) of patients receiving OPDIVO with YERVOY: Grade 2 (n=6) and Grade 1 (n=4). In CheckMate 037, 066, and 067, Grade 2 infusion related reactions occurred in 2.7% (21/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=8), and Grade 1 (n=11). In CheckMate 057, Grade 2 infusion reactions requiring corticosteroids occurred in 1.0% (3/287) of patients receiving OPDIVO. In CheckMate 025, hypersensitivity/infusion-related reactions occurred in 6% (25/406) of patients receiving OPDIVO and 1.0% (4/397) of patients receiving everolimus. In CheckMate 205 and 039, hypersensitivity/infusion- related reactions occurred in 16% (42/263) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=24), and Grade 1 (n=16).

Complications of Allogeneic HSCT after OPDIVO

Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from CheckMate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic SCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune- mediated adverse reactions, and intervene promptly.

Embryo-fetal Toxicity

Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.

Serious Adverse Reactions

In CheckMate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm relative to the OPDIVO arm. The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In CheckMate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In CheckMate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In CheckMate 057, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pulmonary embolism, dyspnea, pleural effusion, and respiratory failure. In CheckMate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In CheckMate 205 and 039, among all patients (safety population [n=263]), adverse reactions leading to discontinuation (4.2%) or to dosing delays (23%) occurred. The most frequent serious adverse reactions reported in 1% of patients were infusion-related reaction, pneumonia, pleural effusion, pyrexia, rash and pneumonitis. Ten patients died from causes other than disease progression, including 6 who died from complications of allogeneic HSCT. Serious adverse reactions occurred in 21% of patients in the safety population (n=263) and 27% of patients in the subset of patients evaluated for efficacy (efficacy population [n=95]).

Common Adverse Reactions

In CheckMate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In CheckMate 037, the most common adverse reaction (≥20%) reported with OPDIVO was rash (21%). In CheckMate 066, the most common adverse reactions (≥20%) reported with OPDIVO vs dacarbazine were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In CheckMate 057, the most common adverse reactions (≥20%) reported with OPDIVO were fatigue (49%), musculoskeletal pain (36%), cough (30%), decreased appetite (29%), and constipation (23%). In CheckMate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO vs everolimus were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In CheckMate 205 and 039, among all patients (safety population [n=263]) and the subset of patients in the efficacy population (n=95), respectively, the most common adverse reactions (reported in at least 20%) were fatigue (32% and 43%), upper respiratory tract infection (28% and 48%), pyrexia (24% and 35%), diarrhea (23% and 30%), and cough (22% and 35%). In the subset of patients in the efficacy population (n=95), the most common adverse reactions also included rash (31%), musculoskeletal pain (27%), pruritus (25%), nausea (23%), arthralgia (21%), and peripheral neuropathy (21%).

In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

CHECKMATE Trials and Patient Populations

CheckMate 069 and 067 – advanced melanoma alone or in combination with YERVOY; CheckMate 037 and 066 – advanced melanoma; CheckMate 057 – non-squamous non-small cell lung cancer (NSCLC); CheckMate 025 – renal cell carcinoma; CheckMate 205/039 – classical Hodgkin lymphoma