Actinium Announces Initiation of Phase 2 Clinical Trial of Actimab-A in Patients Newly Diagnosed with Acute Myeloid Leukemia Over Age 60

On September 27, 2016 Actinium Pharmaceuticals, Inc. (NYSE MKT:ATNM) ("Actinium" or "the Company"), a biopharmaceutical Company developing innovative targeted payload immunotherapeutics for the treatment of advanced cancers, reported that the Company has initiated a Phase 2 clinical trial of Actimab-A in patients newly diagnosed with Acute Myeloid Leukemia (AML) who are over the age of 60 (Press release, Actinium Pharmaceuticals, SEP 27, 2016, View Source [SID:SID1234515434]). Actimab-A, Actinium’s most advanced alpha particle immunotherapy (APIT) program consists of the CD33 targeting monoclonal antibody, HuM195, and the alpha-emitting radioisotope, actinium-225.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are excited to have initiated the Phase 2 trial of Actimab-A for elderly patients who are newly diagnosed with AML and ineligible for 7+3 treatment. These older patients face a poor prognosis and have limited viable treatment options" said Sandesh Seth, Actinium’s Executive Chairman. "We are encouraged by the safety and efficacy signals we have seen thus far and look forward to the execution of this trial with an eye toward interim and top-line results which are both expected in 2017."

This Phase 2 clinical trial is a multicenter, open-label study that will enroll 53 patients. Patients will receive 2.0 µCi/kg/fractionated dose of Actimab-A via two injections given at day 1 and day 7. The Phase 2 trial is designed to evaluate complete response rates at up to day 42 after Actimab-A administration, where complete response is defined as complete remission (CR) or complete remission with incomplete platelet recovery (CRp). A formal interim analysis is expected to occur in mid-2017 with topline results expected in the second half of 2017. The Phase 2 trial will include peripheral blast burden as an inclusion criteria and in patients with high peripheral blast (PB) burden, the use of Hydroxyurea will be mandated with the goal of bringing PB burden below a key threshold number that the Company has identified from two previously complete Phase 1 clinical trials totaling 38 patients. In addition, the use of granulocyte colony-stimulating factors (GCSF) will be mandated. Low dose cytarabine has been eliminated from the protocol and the Phase 2 clinical trial will evaluate Actimab-A as a monotherapy. The secondary endpoint of the Phase 2 trial will be overall survival.

Dr. Joseph Jurcic, Principal Investigator of the Actimab-A Phase 2 trial and Director of Hematologic Malignancies; Professor of Medicine at Columbia University Medical Center said, "Actimab-A has been studied in two clinical trials thus far in patients with AML ranging in age from 18-87 who had a wide array of genetic risk factors that were at various stages of disease progression. Actimab-A has shown a promising safety and efficacy profile thus far that we believe differentiates Actimab-A from other CD33 targeting drug candidate, which is an exciting space in AML. Our PB burden hypothesis indicates that of all factors related to AML including age, stage of disease and genetic factors, peripheral blast burden showed to be the most relevant. With PB burden serving as an inclusion criteria in this Phase 2 trial and the use of Hydroxyurea being mandated in patients with PB burden above a key threshold we look forward to conducting this clinical trial in this older patient population that has a great unmet medical need."

The Company will host a webinar Tuesday, September 27, 2016 at 9:00 AM ET to discuss the Phase 2 clinical trial. Details for the webinar are as follows:

Date: Tuesday, September 27, 2016
Time: 9:00 AM ET
Webinar Link: View Source
Speakers: Joseph Jurcic, M.D., Director of Hematologic Malignancies; Professor of Medicine at Columbia University Medical Center. Actimab-A Principal Investigator
Sandesh Seth, Executive Chairman, Actinium Pharmaceuticals
Dragan Cicic, M.D., Chief Medical Officer, Actinium Pharmaceuticals

About Actimab-A

Actimab-A, Actinium’s most advanced alpha particle immunotherapy (APIT) program, is in a multicenter, open-label, Phase 2 clinical trial for patients newly diagnosed with Acute Myeloid Leukemia (AML) over the age of 60. Actimab-A is being developed as a first-line therapy and it has attracted support from some of the leading experts at the most prestigious cancer treatment hospitals due to the potential of its safety and efficacy profile. Actimab-A consists of the monoclonal antibody, HuM195, and the radioisotope, actinium-225. Actinium-225 decays by giving off high-energy alpha particles, which kill cancer cells. When actinium decays, it produces a series of daughter atoms, each of which gives off its own alpha particle, increasing the chances that the cancer cell will be destroyed. HuM195 is the humanized version of M195 and is a monoclonal antibody that targets CD33, which is abundantly found on myeloid leukemia cells. Both the alpha particle technology and HuM195 were initially developed at Memorial Sloan Kettering Cancer Center. Actimab-A is a second-generation therapy from the Company’s HuM195-Alpha program, which has now been studied in almost 90 patients in four clinical trials.

NCCN Guidelines® Recommend Jakafi® (ruxolitinib) for the Treatment of Myelofibrosis

On September 27, 2016 Incyte Corporation (Nasdaq: INCY) reported that its first-in-class JAK1/JAK2 inhibitor, Jakafi (ruxolitinib), has been included as a recommended treatment in the latest National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology for myelofibrosis (MF) (Press release, Incyte, SEP 27, 2016, View Source [SID:SID1234515428]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Jakafi is the first FDA-approved treatment for patients with intermediate or high-risk MF, representing an important advancement for patients," said Peg Squier, M.D., Ph.D., Incyte’s Head of U.S. Medical Affairs. "We are pleased that Jakafi has been recommended in the first set of NCCN treatment guidelines for MPNs, which will help inform healthcare providers’ treatment decisions for patients with MF. We believe that this underscores the important and long-term clinical benefits seen in patients treated with Jakafi."

MF is part of a group of related rare blood cancers known as myeloproliferative neoplasms (MPNs). In MF, a patient’s bone marrow can no longer produce enough normal blood cells, causing the spleen and or liver to become enlarged.1 MF is a progressive disease, which leads to bone marrow scarring and significant debilitating disease-related symptoms such as anemia, fatigue, and itching which can result in a poor quality of life.2 Patients with MF have a decreased life expectancy, with an average survival of approximately five to six years.3 The cause of MF is unknown but is linked to genetic mutations—between 50% and 60% of people with MF have a specific mutation of the Janus Kinase 2 gene (JAK2).4
The new NCCN Guidelines are available online at www.nccn.org.

About Jakafi (ruxolitinib)
Jakafi is a first-in-class JAK1/JAK2 inhibitor approved by the U.S. Food and Drug Administration, for treatment of people with intermediate or high-risk myelofibrosis (MF), including primary MF, post–polycythemia vera MF, and post–essential thrombocythemia MF.

Jakafi is also indicated for treatment of people with polycythemia vera (PV) who have had an inadequate response to or are intolerant of hydroxyurea.

Jakafi is marketed by Incyte in the United States and by Novartis as Jakavi (ruxolitinib) outside the United States. Jakafi is a registered trademark of Incyte Corporation. Jakavi is a registered trademark of Novartis AG in countries outside the United States.

Important Safety Information
Jakafi can cause serious side effects, including:
Low blood counts: Jakafi (ruxolitinib) may cause your platelet, red blood cell, or white blood cell counts to be lowered. If you develop bleeding, stop taking Jakafi and call your healthcare provider. Your healthcare provider will perform blood tests to check your blood counts before you start Jakafi and regularly during your treatment. Your healthcare provider may change your dose of Jakafi or stop your treatment based on the results of your blood tests. Tell your healthcare provider right away if you develop or have worsening symptoms such as unusual bleeding, bruising, tiredness, shortness of breath, or a fever.

Infection: You may be at risk for developing a serious infection during treatment with Jakafi. Tell your healthcare provider if you develop any of the following symptoms of infection: chills, nausea, vomiting, aches, weakness, fever, painful skin rash or blisters.
Skin cancers: Some people who take Jakafi have developed certain types of non-melanoma skin cancers. Tell your healthcare provider if you develop any new or changing skin lesions.

Increases in Cholesterol: You may have changes in your blood cholesterol levels. Your healthcare provider will do blood tests to check your cholesterol levels during your treatment with Jakafi.

The most common side effects of Jakafi include: low platelet count, low red blood cell counts, bruising, dizziness, headache.
These are not all the possible side effects of Jakafi. Ask your pharmacist or healthcare provider for more information. Tell your healthcare provider about any side effect that bothers you or that does not go away.

Before taking Jakafi, tell your healthcare provider about: all the medications, vitamins, and herbal supplements you are taking and all your medical conditions, including if you have an infection, have or had tuberculosis (TB), or have been in close contact with someone who has TB, have or had hepatitis B, have or had liver or kidney problems, are on dialysis, had skin cancer or have any other medical condition. Take Jakafi exactly as your healthcare provider tells you. Do not change or stop taking Jakafi without first talking to your healthcare provider. Do not drink grapefruit juice while on Jakafi.

Women should not take Jakafi while pregnant or planning to become pregnant, or if breast-feeding.
Full Prescribing Information, which includes a more complete discussion of the risks associated with Jakafi, is available at www.jakafi.com.

About National Comprehensive Cancer Network
The National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of 27 of the world’s leading cancer centers devoted to patient care, research, and education, is dedicated to improving the quality, effectiveness, and efficiency of cancer care so that patients can live better lives. Through the leadership and expertise of clinical professionals at NCCN Member Institutions, NCCN develops resources that present valuable information to the numerous stakeholders in the health care delivery system. As the arbiter of high-quality cancer care, NCCN promotes the importance of continuous quality improvement and recognizes the significance of creating clinical practice guidelines appropriate for use by patients, clinicians, and other health care decision-makers.

Bristol-Myers Squibb and Nektar Therapeutics Announce Oncology Clinical Collaboration to Evaluate the Combination of Opdivo (nivolumab) and NKTR-214

On September 27, 2016 Bristol-Myers Squibb Company (NYSE:BMY) and Nektar Therapeutics (Nasdaq:NKTR) reported a new clinical collaboration to evaluate Bristol-Myers Squibb’s Opdivo (nivolumab) with Nektar’s investigational medicine, NKTR-214, as a potential combination treatment regimen in five tumor types and seven potential indications (Press release, Bristol-Myers Squibb, SEP 27, 2016, View Source [SID:SID1234515426]). Opdivo is a PD-1 immune checkpoint inhibitor designed to overcome immune suppression. NKTR-214 is an investigational immuno-stimulatory therapy designed to expand specific cancer-fighting T cells and natural killer (NK) cells directly in the tumor micro-environment and increase expression of PD-1 on these immune cells.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are excited to explore the potential benefits in multiple types of cancer of the combination of Opdivo with Nektar’s innovative cancer immunotherapy," said Fouad Namouni, M.D., Head of Oncology, Bristol-Myers Squibb. "We believe that a combination regimen which utilizes two different and complementary mechanisms designed to harness the body’s own immune system to fight cancer has the potential to provide new treatment options for patients."

The Phase 1/2 clinical trials will evaluate the potential for the combination of Opdivo and NKTR-214 to show improved and sustained efficacy and tolerability above the current standard of care in melanoma, kidney, colorectal, bladder and non-small cell lung cancer patients. An initial dose-escalation trial is underway with Opdivo and NKTR-214.

Bristol-Myers Squibb and Nektar will equally share costs of the combined therapy trials. Nektar will maintain its global commercial rights to NKTR-214.

"We’re very pleased to be collaborating with Bristol-Myers Squibb, a global leader in immuno-oncology, in order to advance quickly the development of NKTR-214 with a PD-1 immune checkpoint inhibitor," said Howard W. Robin, President and CEO of Nektar Therapeutics. "NKTR-214 is designed to grow tumor infiltrating lymphocytes (TILs) in vivo and replenish the immune system, which is critically important as many patients battling cancer lack sufficient TIL populations to benefit from approved checkpoint inhibitor therapies. The combination of checkpoint inhibition with T cell growth could lead to synergistic effects that may provide a new treatment option for patients."

Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world in July 2014, and currently has regulatory approval in 54 countries including the United States, Japan, and in the European Union.

NKTR-214 is an experimental therapy designed to stimulate cancer-killing immune cells in the body by targeting CD122 specific receptors found on the surface of these immune cells, known as CD8+ effector T cells and Natural Killer (NK) cells. In preclinical studies, treatment with NKTR-214 resulted in a rapid expansion of these cells and mobilization into the tumor micro-environment.1,2 NKTR-214 has an antibody-like dosing regimen similar to the existing checkpoint inhibitor class of approved medicines. A Phase 1/2 clinical study is ongoing to evaluate single-agent NKTR-214 in cancer patients.

Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research

At Bristol-Myers Squibb, we have a vision for the future of cancer care that is focused on Immuno-Oncology, now considered a major treatment choice alongside surgery, radiation, chemotherapy and targeted therapies for certain types of cancer.

We have a comprehensive clinical portfolio of investigational and approved Immuno-Oncology agents, many of which were discovered and developed by our scientists. Our ongoing Immuno-Oncology clinical program is looking at broad patient populations, across multiple solid tumors and hematologic malignancies, and lines of therapy and histologies, with the intent of powering our trials for overall survival and other important measures like durability of response. We pioneered the research leading to the first regulatory approval for the combination of two Immuno-Oncology agents and continue to study the role of combinations in cancer.

We are also investigating other immune system pathways in the treatment of cancer including CTLA-4, CD-137, KIR, SLAMF7, PD-1, GITR, CSF1R, IDO and LAG-3. These pathways may lead to potential new treatment options – in combination or monotherapy – to help patients fight different types of cancers.

Our collaboration with academia, as well as small and large biotech and pharmaceutical companies, to research the potential of Immuno-Oncology and non-Immuno-Oncology combinations helps achieve our goal of providing new treatment options in clinical practice.

At Bristol-Myers Squibb, we are committed to changing survival expectations in hard-to-treat cancers and the way patients live with cancer.

About Opdivo

Cancer cells may exploit "regulatory" pathways, such as checkpoint pathways, to hide from the immune system and shield the tumor from immune attack. Opdivo is a PD-1 immune checkpoint inhibitor that binds to the checkpoint receptor PD-1 expressed on activated T-cells, and blocks the binding of PD-L1 and PD-L2, preventing the PD-1 pathway’s suppressive signaling on the immune system, including the interference with an anti-tumor immune response.

Opdivo’s broad global development program is based on Bristol-Myers Squibb’s understanding of the biology behind Immuno-Oncology. Our company is at the forefront of researching the potential of Immuno-Oncology to extend survival in hard-to-treat cancers. This scientific expertise serves as the basis for the Opdivo development program, which includes a broad range of Phase 3 clinical trials evaluating overall survival as the primary endpoint across a variety of tumor types. The Opdivo trials have also contributed toward the clinical and scientific understanding of the role of biomarkers and how patients may benefit from Opdivo across the continuum of PD-L1 expression. To date, the Opdivo clinical development program has enrolled more than 18,000 patients.

U.S. INDICATIONS & IMPORTANT SAFETY INFORMATION

INDICATIONS

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and post-transplantation brentuximab vedotin. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Please refer to the end of the Important Safety Information for a brief description of the patient populations studied in the CheckMate trials.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

Immune-mediated pneumonitis, including fatal cases, occurred with OPDIVO treatment. Across the clinical trial experience with solid tumors, fatal immune-mediated pneumonitis occurred with OPDIVO. In addition, in Checkmate 069, there were six patients who died without resolution of abnormal respiratory findings. Monitor patients for signs with radiographic imaging and symptoms of pneumonitis. Administer corticosteroids for Grade 2 or greater pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In Checkmate 069 and 067, immune-mediated pneumonitis occurred in 6% (25/407) of patients receiving OPDIVO with YERVOY: Fatal (n=1), Grade 3 (n=6), Grade 2 (n=17), and Grade 1 (n=1). In Checkmate 037, 066, and 067, immune-mediated pneumonitis occurred in 1.8% (14/787) of patients receiving OPDIVO: Grade 3 (n=2) and Grade 2 (n=12). In Checkmate 057, immune-mediated pneumonitis, including interstitial lung disease, occurred in 3.4% (10/287) of patients: Grade 3 (n=5), Grade 2 (n=2), and Grade 1 (n=3). In Checkmate 025, pneumonitis, including interstitial lung disease, occurred in 5% (21/406) of patients receiving OPDIVO and 18% (73/397) of patients receiving everolimus. Immune-mediated pneumonitis occurred in 4.4% (18/406) of patients receiving OPDIVO: Grade 4 (n=1), Grade 3 (n=4), Grade 2 (n=12), and Grade 1 (n=1). In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 4.9% (13/263) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 3.4% (9/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=8).

Immune-Mediated Colitis

Immune-mediated colitis can occur with OPDIVO treatment. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. As a single agent, withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon restarting OPDIVO. When administered with YERVOY, withhold OPDIVO for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis upon restarting OPDIVO. In Checkmate 069 and 067, diarrhea or colitis occurred in 56% (228/407) of patients receiving OPDIVO with YERVOY. Immune-mediated colitis occurred in 26% (107/407) of patients: Grade 4 (n=2), Grade 3 (n=60), Grade 2 (n=32), and Grade 1 (n=13). In Checkmate 037, 066, and 067, diarrhea or colitis occurred in 31% (242/787) of patients receiving OPDIVO. Immune-mediated colitis occurred in 4.1% (32/787) of patients: Grade 3 (n=20), Grade 2 (n=10), and Grade 1 (n=2). In Checkmate 057, diarrhea or colitis occurred in 17% (50/287) of patients receiving OPDIVO. Immune-mediated colitis occurred in 2.4% (7/287) of patients: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=2). In Checkmate 025, diarrhea or colitis occurred in 25% (100/406) of patients receiving OPDIVO and 32% (126/397) of patients receiving everolimus. Immune-mediated diarrhea or colitis occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 3 (n=5), Grade 2 (n=7), and Grade 1 (n=1). In Checkmate 205 and 039, diarrhea or colitis occurred in 30% (80/263) of patients receiving OPDIVO. Immune-mediated diarrhea (Grade 3) occurred in 1.1% (3/263) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Immune-Mediated Hepatitis

Immune-mediated hepatitis can occur with OPDIVO treatment. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune-mediated hepatitis. In Checkmate 069 and 067, immune-mediated hepatitis occurred in 13% (51/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=8), Grade 3 (n=37), Grade 2 (n=5), and Grade 1 (n=1). In Checkmate 037, 066, and 067, immune-mediated hepatitis occurred in 2.3% (18/787) of patients receiving OPDIVO: Grade 4 (n=3), Grade 3 (n=11), and Grade 2 (n=4). In Checkmate 057, one patient (0.3%) developed immune-mediated hepatitis. In Checkmate 025, there was an increased incidence of liver test abnormalities compared to baseline in AST (33% vs 39%), alkaline phosphatase (32% vs 32%), ALT (22% vs 31%), and total bilirubin (9% vs 3.5%) in the OPDIVO and everolimus arms, respectively. Immune-mediated hepatitis requiring systemic immunosuppression occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=5) and Grade 2 (n=1). In Checkmate 205 and 039, hepatitis occurred in 11% (30/263) of patients receiving OPDIVO. Immune-mediated hepatitis occurred in 3.4% (9/263): Grade 3 (n=7) and Grade 2 (n=2).

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Dermatitis

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Neuropathies

In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

Hypophysitis, adrenal insufficiency, thyroid disorders, and type 1 diabetes mellitus can occur with OPDIVO treatment. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency during and after treatment, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Administer insulin for type 1 diabetes. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In Checkmate 069 and 067, hypophysitis occurred in 9% (36/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=8), Grade 2 (n=25), and Grade 1 (n=3). In Checkmate 037, 066, and 067, hypophysitis occurred in 0.9% (7/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=2). In Checkmate 025, hypophysitis occurred in 0.5% (2/406) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1). In Checkmate 069 and 067, adrenal insufficiency occurred in 5% (21/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=1), Grade 3 (n=7), Grade 2 (n=11), and Grade 1 (n=2). In Checkmate 037, 066, and 067, adrenal insufficiency occurred in 1% (8/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=5), and Grade 1 (n=1). In Checkmate 057, 0.3% (1/287) of OPDIVO-treated patients developed adrenal insufficiency. In Checkmate 025, adrenal insufficiency occurred in 2.0% (8/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=4), and Grade 1 (n=1). In Checkmate 205 and 039, adrenal insufficiency (Grade 2) occurred in 0.4% (1/263) of patients receiving OPDIVO. In Checkmate 069 and 067, hypothyroidism or thyroiditis occurred in 22% (89/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=6), Grade 2 (n=47), and Grade 1 (n=36). Hyperthyroidism occurred in 8% (34/407) of patients: Grade 3 (n=4), Grade 2 (n=17), and Grade 1 (n=13). In Checkmate 037, 066, and 067, hypothyroidism or thyroiditis occurred in 9% (73/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=37), Grade 1 (n=35). Hyperthyroidism occurred in 4.4% (35/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=12), and Grade 1 (n=22). In Checkmate 057, Grade 1 or 2 hypothyroidism, including thyroiditis, occurred in 7% (20/287) and elevated thyroid stimulating hormone occurred in 17% of patients receiving OPDIVO. Grade 1 or 2 hyperthyroidism occurred in 1.4% (4/287) of patients. In Checkmate 025, thyroid disease occurred in 11% (43/406) of patients receiving OPDIVO, including one Grade 3 event, and in 3.0% (12/397) of patients receiving everolimus. Hypothyroidism/thyroiditis occurred in 8% (33/406) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=17), and Grade 1 (n=14). Hyperthyroidism occurred in 2.5% (10/406) of patients receiving OPDIVO: Grade 2 (n=5) and Grade 1 (n=5). In Checkmate 205 and 039, hypothyroidism/thyroiditis occurred in 12% (32/263) of patients receiving OPDIVO: Grade 2 (n=18) and Grade 1: (n=14). Hyperthyroidism occurred in 1.5% (4/263) of patients receiving OPDIVO: Grade 2: (n=3) and Grade 1 (n=1). In Checkmate 069 and 067, diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/407) of patients: Grade 4 (n=3), Grade 3 (n=1), Grade 2 (n=1), and Grade 1 (n=1). In Checkmate 037, 066, and 067, diabetes mellitus or diabetic ketoacidosis occurred in 0.8% (6/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=1). In Checkmate 025, hyperglycemic adverse events occurred in 9% (37/406) patients. Diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=1). In Checkmate 205 and 039, diabetes mellitus occurred in 0.8% (2/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1).

In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

Immune-mediated nephritis can occur with OPDIVO treatment. Monitor patients for elevated serum creatinine prior to and periodically during treatment. For Grade 2 or 3 increased serum creatinine, withhold and administer corticosteroids; if worsening or no improvement occurs, permanently discontinue. Administer corticosteroids for Grade 4 serum creatinine elevation and permanently discontinue. In Checkmate 069 and 067, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients: Grade 4 (n=4), Grade 3 (n=3), and Grade 2 (n=2). In Checkmate 037, 066, and 067, nephritis and renal dysfunction of any grade occurred in 5% (40/787) of patients receiving OPDIVO. Immune-mediated nephritis and renal dysfunction occurred in 0.8% (6/787) of patients: Grade 3 (n=4) and Grade 2 (n=2). In Checkmate 057, Grade 2 immune-mediated renal dysfunction occurred in 0.3% (1/287) of patients receiving OPDIVO. In Checkmate 025, renal injury occurred in 7% (27/406) of patients receiving OPDIVO and 3.0% (12/397) of patients receiving everolimus. Immune-mediated nephritis and renal dysfunction occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 5 (n=1), Grade 4 (n=1), Grade 3 (n=5), and Grade 2 (n=6). In Checkmate 205 and 039, nephritis and renal dysfunction occurred in 4.9% (13/263) of patients treated with OPDIVO. This included one reported case (0.3%) of Grade 3 autoimmune nephritis.

Immune-Mediated Rash

Immune-mediated rash can occur with OPDIVO treatment. Severe rash (including rare cases of fatal toxic epidermal necrolysis) occurred in the clinical program of OPDIVO. Monitor patients for rash. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4. In Checkmate 069 and 067, immune-mediated rash occurred in 22.6% (92/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=15), Grade 2 (n=31), and Grade 1 (n=46). In Checkmate 037, 066, and 067, immune-mediated rash occurred in 9% (72/787) of patients receiving OPDIVO: Grade 3 (n=7), Grade 2 (n=15), and Grade 1 (n=50). In Checkmate 057, immune-mediated rash occurred in 6% (17/287) of patients receiving OPDIVO including four Grade 3 cases. In Checkmate 025, rash occurred in 28% (112/406) of patients receiving OPDIVO and 36% (143/397) of patients receiving everolimus. Immune-mediated rash, defined as a rash treated with systemic or topical corticosteroids, occurred in 7% (30/406) of patients receiving OPDIVO: Grade 3 (n=4), Grade 2 (n=7), and Grade 1 (n=19). In Checkmate 205 and 039, rash occurred in 22% (58/263) of patients receiving OPDIVO. Immune-mediated rash occurred in 7% (18/263) of patients on OPDIVO: Grade 3 (n=4), Grade 2 (n=3), and Grade 1 (n=11).

Immune-Mediated Encephalitis

Immune-mediated encephalitis can occur with OPDIVO treatment. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In Checkmate 067, encephalitis was identified in one patient (0.2%) receiving OPDIVO with YERVOY. In Checkmate 057, fatal limbic encephalitis occurred in one patient (0.3%) receiving OPDIVO. In Checkmate 205 and 039, encephalitis occurred in 0.8% (2/263) of patients after allogeneic HSCT after OPDIVO.

Other Immune-Mediated Adverse Reactions

Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. In < 1.0% of patients receiving OPDIVO, the following clinically significant, immune-mediated adverse reactions occurred: uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, and sarcoidosis. Across clinical trials of OPDIVO as a single agent administered at doses of 3 mg/kg and 10 mg/kg, additional clinically significant, immune-mediated adverse reactions were identified: motor dysfunction, vasculitis, and myasthenic syndrome.

Infusion Reactions

Severe infusion reactions have been reported in <1.0% of patients in clinical trials of OPDIVO. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In Checkmate 069 and 067, infusion- related reactions occurred in 2.5% (10/407) of patients receiving OPDIVO with YERVOY: Grade 2 (n=6) and Grade 1 (n=4). In Checkmate 037, 066, and 067, Grade 2 infusion related reactions occurred in 2.7% (21/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=8), and Grade 1 (n=11). In Checkmate 057, Grade 2 infusion reactions requiring corticosteroids occurred in 1.0% (3/287) of patients receiving OPDIVO. In Checkmate 025, hypersensitivity/infusion-related reactions occurred in 6% (25/406) of patients receiving OPDIVO and 1.0% (4/397) of patients receiving everolimus. In Checkmate 205 and 039, hypersensitivity/infusion-related reactions occurred in 16% (42/263) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=24), and Grade 1 (n=16).

Complications of Allogeneic HSCT after OPDIVO

Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic SCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.

Embryo-fetal Toxicity

Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.

Serious Adverse Reactions

In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm relative to the OPDIVO arm. The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 057, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pulmonary embolism, dyspnea, pleural effusion, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, among all patients (safety population [n=263]), adverse reactions leading to discontinuation (4.2%) or to dosing delays (23%) occurred. The most frequent serious adverse reactions reported in ≥1% of patients were infusion-related reaction, pneumonia, pleural effusion, pyrexia, rash and pneumonitis. Ten patients died from causes other than disease progression, including 6 who died from complications of allogeneic HSCT. Serious adverse reactions occurred in 21% of patients in the safety population (n=263) and 27% of patients in the subset of patients evaluated for efficacy (efficacy population [n=95]).

Common Adverse Reactions

In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO vs dacarbazine were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 057, the most common adverse reactions (≥20%) reported with OPDIVO were fatigue (49%), musculoskeletal pain (36%), cough (30%), decreased appetite (29%), and constipation (23%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO vs everolimus were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, among all patients (safety population [n=263]) and the subset of patients in the efficacy population (n=95), respectively, the most common adverse reactions (reported in at least 20%) were fatigue (32% and 43%), upper respiratory tract infection (28% and 48%), pyrexia (24% and 35%), diarrhea (23% and 30%), and cough (22% and 35%). In the subset of patients in the efficacy population (n=95), the most common adverse reactions also included rash (31%), musculoskeletal pain (27%), pruritus (25%), nausea (23%), arthralgia (21%), and peripheral neuropathy (21%).

In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

CHECKMATE Trials and Patient Populations

Checkmate 069 and 067 – advanced melanoma alone or in combination with YERVOY; Checkmate 037 and 066 – advanced melanoma; Checkmate 057 – non-squamous non-small cell lung cancer (NSCLC); Checkmate 025 – renal cell carcinoma; Checkmate 205/039 – classical Hodgkin lymphoma

Please see U.S. Full Prescribing Information, including Boxed WARNING regarding immune-mediated adverse reactions, for YERVOY.

Please see U.S. Full Prescribing Information for OPDIVO.

Amgen Announces Top-Line Results From Phase 3 KYPROLIS® (Carfilzomib) CLARION Study In Newly Diagnosed Multiple Myeloma Patients

On September 27, 2016 Amgen (NASDAQ:AMGN) reported top-line results of the Phase 3 CLARION trial, which evaluated an investigational regimen of KYPROLIS (carfilzomib), melphalan and prednisone (KMP) versus Velcade (bortezomib), melphalan and prednisone (VMP) for 54 weeks in patients with newly diagnosed multiple myeloma who were ineligible for hematopoietic stem-cell transplant (Press release, Amgen, SEP 27, 2016, View Source [SID:SID1234515424]). The trial did not meet the primary endpoint of superiority in progression-free survival (PFS) (median PFS 22.3 months for KMP versus 22.1 months for VMP, HR = 0.91, 95 percent CI, 0.75 – 1.10). While the data for overall survival, a secondary endpoint, are not yet mature, the observed hazard ratio (KMP versus VMP) was 1.21 (95 percent CI, 0.90 – 1.64). Neither result was statistically significant.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Overall, the adverse events in the KMP arm were consistent with the known safety profile of KYPROLIS. The incidence of Grade 3 or higher adverse events was 74.7 percent in the KMP arm and 76.2 percent in the VMP arm. Fatal treatment-emergent adverse events occurred in 6.5 percent of KMP patients and 4.3 percent of VMP patients. The incidence of Grade 2 or higher peripheral neuropathy, a secondary endpoint, was 2.5 percent in the KMP arm and 35.1 percent in the VMP arm.

These data will be submitted to a future medical conference and for publication.

"Based on studies in the KYPROLIS label, including the ENDEAVOR study, a head-to-head comparison of KYPROLIS to Velcade in patients with relapsed or refractory multiple myeloma, we know KYPROLIS to be a major advance in proteasome inhibitor therapy," said Sean E. Harper, M.D., executive vice president of Research and Development at Amgen. "The CLARION results, generated in the context of a melphalan-containing regimen, are disappointing, especially given the robust data we’ve seen in the second-line setting. However, the myeloma landscape has changed dramatically since the design of the CLARION study with very few newly diagnosed patients treated with melphalan-based regimens, particularly in the U.S. We remain committed to exploring KYPROLIS in combination with other agents to advance the treatment of multiple myeloma."

Amgen supports a number of investigator-sponsored studies, and a Phase 3 study evaluating KYPROLIS in combination with lenalidomide plus dexamethasone (KRd) versus Velcade in combination with lenalidomide plus dexamethasone (VRd) in newly diagnosed multiple myeloma patients. This trial, called E1A11 or ENDURANCE, is underway independently by the ECOG-ACRIN Cancer Research Group with funding provided by the National Cancer Institute (NCI) and its National Clinical Trials Network. Over 750 institutions nationwide are currently enrolling patients in the study (NCT01863550).

The KYPROLIS clinical program continues to focus on providing solutions for physicians and patients in treating this frequently relapsing and difficult-to-treat cancer. KYPROLIS is available for patients whose myeloma has relapsed or become resistant to another treatment and continues to be studied in a range of combinations and patient populations.

About the CLARION Study
The CLARION study was a Phase 3 head-to-head multicenter, open-label, randomized study in transplant-ineligible patients with newly diagnosed multiple myeloma. A total of 955 patients were randomized 1:1 to receive KYPROLIS, melphalan and prednisone or Velcade, melphalan and prednisone for 54 weeks. The median patient age was 72.

The KMP regimen consisted of KYPROLIS as a 30 minute intravenous (IV) infusion on days 1, 2, 8, 9, 22, 23, 29 and 30 during each 42-day cycle (20 mg/m2 on days 1 and 2 of cycle 1; 36 mg/m2 thereafter), melphalan 9 mg/m2 on days 1–4, and prednisone 60 mg/m2 on days 1–4.

About Multiple Myeloma
Multiple myeloma is an incurable blood cancer, characterized by a recurring pattern of remission and relapse.1 It is a rare and very aggressive disease that accounts for approximately one percent of all cancers.2,3 In the U.S., there are nearly 95,000 people living with, or in remission from, multiple myeloma.4 Approximately 30,330 Americans are diagnosed with multiple myeloma each year and 12,650 patient deaths are reported on an annual basis.4

MiNA Therapeutics Announces Presentation of Pre-Clinical Data Supporting On-Target Mechanism of Action of Clinical Candidate MTL-CEBPA

On September 27, 2016 MiNA Therapeutics, the pioneer in RNA activation therapeutics, reported the presentation of data supporting the on-target mechanism of action of drug candidate MTL-CEBPA (Press release, MiNA Therapeutics, SEP 27, 2016, View Source [SID:SID1234515421]). MTL-CEBPA is the first development candidate to emerge from MiNA’s RNA activation platform and is currently being evaluated in a Phase I clinical study in patients with liver cancer.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The data were presented at the 2016 Annual Meeting of the Oligonucleotide Therapeutics Society on September 26 in Montreal, Canada, in a poster titled "Development and mechanism of a small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for patients with liver cancer".

"Through a range of methods MTL-CEBPA has been validated to up-regulate the CEBP-a protein through an on-target and highly specific mechanism of transcriptional activation" commented Robert Habib, CEO of MiNA Therapeutics. "This data supports the potential of our RNA activation platform to up-regulate therapeutically ‘undruggable’ proteins in a highly specific manner."

MTL-CEBPA is a SMARTICLES liposomal formulation of CEBPA-51, a small activating RNA targeting the CEBPA gene. In the experiments covered by the presentation, CEBPA-51 was shown in cell lines to transcriptionally activate expression of CEBPA gene resulting in increased levels of CEBPA mRNA as well as CEBP-a protein. Mutations and modifications to the sequence of CEBPA-51 demonstrated this mechanism to be sequence specific as well as strand specific. Incorporation of 2’O-Me modifications in CEBPA-51 was shown to abrogate immune stimulation without loss of on-target activity. In addition, CEBPA-51 was shown to co-localise with, and require for activity, Argonaute 2 – an enzyme involved in a cell’s innate regulation of gene expression.

The poster presented at the Oligonucleotide Therapeutics Society Annual Meeting is available on the Company’s website in the publication section under "Media".

About MTL-CEBPA

MTL-CEBPA consists of a double stranded RNA formulated into a SMARTICLES liposomal nanoparticle and is designed to activate the CEBPA gene. By restoring CEBPA expression to normal levels, MTL-CEBPA has been demonstrated to attenuate or reverse liver disease in a range of pre-clinical studies including models of liver cancer, liver cirrhosis, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). MTL-CEBPA is currently under evaluation in OUTREACH, a first-in-human Phase I clinical study in patients with severe liver cancer. The multi-centre Phase I study will assess the safety and tolerability of MTL-CEBPA in patients with advanced primary or metastatic liver cancer who are ineligible or resistant to standard therapies. To learn more about the OUTREACH clinical study, please visit our listing at clinicaltrials.gov