Moleculin Presents Preclinical Data of Novel Inhibitor of Glycolysis at 28th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics

On December Moleculin Biotech, Inc., (NASDAQ: MBRX) ("Moleculin" or the "Company"), a preclinical pharmaceutical company focused on the development of anti-cancer drug candidates, many of which are based on license agreements with The University of Texas System on behalf of the M.D. Anderson Cancer Center, reported its scientific presentation at the 28th EORTC-NCI-AACR (Free EORTC-NCI-AACR Whitepaper) Symposium on Molecular Targets and Cancer Therapeutics (Press release, Moleculin, DEC 13, 2016, View Source [SID1234517062]). Waldemar Priebe, PhD, Moleculin’s Founder, Founding Scientist, and Chair of the Scientific Advisory Board presented the Abstract on November 30th at the Symposium in Munich, Germany.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Wally Klemp, Chairman and CEO stated, "This presentation shows proof of concept data for our WP1122 portfolio, including data demonstrating increased survival of animals with human brain tumors treated with WP1122, as well as its biodistribution and pharmacokinetics. In non-optimal doses and treatment regimens, our lead inhibitor WP1122 performed equal to or better than the current market leader, cytotoxic drug temozolomide and significantly improved survival in animals treated with WP1122 in combination with temozolomide."

The following is an overview of the presentation, titled "Latentiation of 2-deoxy-D-glucose". No curative therapy exists for patients with high-grade malignant gliomas (GBMs). New approaches to the treatment of this disease are currently being evaluated with mixed results. One approach, that deserves to be therapeutically exploited, is targeting brain tumor metabolism. 2-Deoxy-D-glucose (2-DG), a known effective inhibitor of glycolysis, has been clinically tested but results did not meet expectations due to poor drug-like characteristics and inability to achieve therapeutic concentrations of 2-DG in the brain.

Dr. Waldemar Priebe stated, "We proposed to use latentiation of 2-DG to overcome this problem by chemically modifying biologically active 2-DG to form prodrugs with increased brain uptake that will be able to liberate in vivo the parent compound 2-DG in the brain. In our approach, we synthesized a series of differentially acetylated derivatives of 2-DG. Preliminary in vivo studies in mice of selected diacetates of 2-DG demonstrated >9 fold increased levels of 2-DG in the brain when compared with levels of 2-DG after administration of equimolar amount of 2-DG itself. Ultimately, our studies focused on a single compound 3,6-di-O-acetyl-2-deoxy-D-glucose (WP1122)."

Compound WP1122 was administered in vivo without toxic death up to the highest feasible dose of 3.0 g/kg intravenously and orally up to 6.0 g/kg. Significantly increased survival, comparable to or better than that of temozolomide, was observed for orally administered WP1122 in a U87 orthotopic glioma model at a dose of 1.25 g/kg. These promising results prompted continuation of preclinical toxicology evaluation of WP1122 aimed at the initiation of formal IND enabling studies. In addition, the proof of concept delivered by WP1122 has provided not only an effective approach to develop novel agents able to effectively cross the blood brain barrier but also a method to create a new class of dual function prodrugs by exploring biologically active acids.

Moleculin’s Chairman and CEO, Walter Klemp, concluded, "We are excited to present our results at this prestigious symposium. Clearly, the significantly increased survival data is key, especially as no curative therapy exists for patients with high-grade malignant gliomas today. We look forward to presenting additional data as we progress toward our clinical timeline."
For more information on the Symposium click: View Source