On August 25, 2022 IEEE, the world’s largest technical professional organization dedicated to advancing technology for humanity, and the IEEE Engineering in Medicine and Biology Society (EMBS), reported the publication of a report that demonstrates how a new 3D screening tool can help accelerate the development of cancer treatments through a new testing method that increases the number of tests on solid tumor samples by up to 50 times and potentially facilitates larger-scale testing of innovative immunotherapies (Press release, IEEE, AUG 25, 2022, View Source [SID1234618683]). The report, derived from research led by the University of Strathclyde in Glasgow, Scotland, has been published in IEEE Open Journal of Engineering in Medicine and Biology, and is freely available for open access and full-text viewing by all readers around the world.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
The report, "Assessment of CAR-T Cell-Mediated Cytotoxicity in 3D Microfluidic Cancer Co-Culture Models for Combination Therapy," which also is available in the IEEE Xplore digital library, details a more-than-two-year study of screening 3D tumor models with a miniaturized technology platform to evaluate the toxicity of genetically engineered Chimeric Antigen Receptor T (CAR-T) cells used in immunotherapies. Researchers at the University of Glasgow and the Cancer Research UK Beatson Institute in Glasgow also contributed to the study.
"Our study illustrates the promise of our microfluidic technology platform to accelerate the development of leading-edge therapies by enabling 20 to 50 times more experiments to be performed on a solid tumor sample," said Dr. Michele Zagnoni, a reader in Strathclyde’s Department of Electronic and Electrical Engineering, who led the study along with doctoral student Karla Paterson. "CAR-T cell development is typically very expensive, and our research indicates that the miniaturized 3D modeling we employed, which is not yet widely established in the pharma industry, could facilitate significantly more effective and cost-efficient developmental immunotherapies. We look forward to seeing its life-saving impact in preclinical drug testing and, ultimately, precision medicine in the clinic."
Solid tumors are complex environments including both cancerous and noncancerous cells. The IEEE Open Journal of Engineering in Medicine and Biology report details how the microfluidic technology in the study effectively enabled visualization and quantification of the ability of CAR-T cells to rapidly kill the cancer cells without significantly harming the other cells in a tumor sample. The research also revealed that the efficacy of chemotherapies can be improved when combined with CAR-T cell treatment. The deep look into how CAR-T cells do their work was enabled by the 3D models used in the Strathclyde study, which more closely reproduce the complexity of actual tumor microenvironments in the human body than is possible via legacy 2D modeling.
"This report is of equally keen interest to engineers and scientists in medicine and biology. We look forward to further spurring the conversation with more papers of this type and in this topic area," said Paolo Bonato, editor-in-chief of IEEE Open Journal of Engineering in Medicine and Biology. "IEEE EMBS has a valuable transdisciplinary dimension with substantial interaction among expertise across diverse technology areas, and, so, we publish papers both where the main emphasis is on methodology and technology and where the main emphasis is on science. Bridging these two worlds with an open-access journal is crucial to advancing innovative research into concrete, real-world benefit to society."