On April 20, 2015 Medigene AG (MDG1, Frankfurt, Prime Standard) reported that early clinical data of its dendritic cell (DC) vaccines were presented today at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting in Philadelphia, USA (Press release, MediGene, APR 20, 2015, View Source [SID:1234506589]). The clinical data were collected in an ongoing compassionate use program[1] conducted at the Department of Cellular Therapy at the Oslo University Hospital, Norway, under the responsibility of Prof. Gunnar Kvalheim. The poster presentation titled "A new generation of dendritic cells to improve cancer therapy shows prolonged progression free survival in patients with solid tumors" provides data from patients with various types of tumour which were included in this program.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
In summary, one lung cancer patient, one prostate cancer patient, four glioblastoma patients and three acute myeloid leukaemia (AML) patients have started treatment with dendritic cells so far. The new generation of dendritic cells characterized by superior in-vitro functionality when compared to commonly used dendritic cells could be produced from cells of all patients, regardless of the type of malignancy. The included patients suffering from solid tumours clearly showed a longer progression free survival than could be expected according to the stage of their disease, except for the patient with prostate cancer, who due to personal reasons prematurely dropped out of the program. The three AML patients which were included in this dendritic cell compassionate use program have been showing a promising course of disease, however these cases are still too early for evaluation.
Conclusion of this evaluation by Prof. Gunnar Kvalheim, Head of Department of Cellular Therapy, Oslo University Hospital: "Solid tumour patients suffering from advanced disease treated with these DC vaccines have a prolonged progression free survival, showing that this immunotherapeutic approach will be a promising alternative to current standard therapies."
More detailed information can be found in the abstract under the following link: View Source;sKey=eae2d342-dd5a-41ba-9eb4-63990d3122b8&cKey=1ff23671-9f76-44fd-891b-50b8fbfdd1b6&mKey=19573a54-ae8f-4e00-9c23-bd6d62268424
The Oslo University Hospital has an agreement with Medigene for use of Medigene`s new generation DC vaccines for their ongoing academic clinical studies.
Prof. Dolores J. Schendel, Chief Scientific Officer of Medigene AG: "These positive results encourage us in pursuing our DC vaccine development program for which we have recently started our own clinical AML trial, complementing the ongoing academic clinical studies."
About Medigene’s DC vaccines: The platform for the development of new generation antigen-tailored DC vaccines is the most advanced platform of the three highly innovative and complementary immunotherapy platforms of Medigene Immunotherapies. The DC vaccines are currently being evaluated in a company-sponsored clinical trial in acute myeloid leukaemia (AML) as well as in two ongoing clinical investigator-initiated trials: a clinical phase I/II trial in AML at the Ludwig-Maximilian University Hospital Großhadern, Munich, and a clinical phase II trial in prostate cancer at the Oslo University Hospital. Moreover, a compassionate use program is being conducted at the Department of Cellular Therapy at the Oslo University Hospital.
Medigene’s dendritic cell product platform allows the design of new generation dendritic cell vaccines. Dendritic cells can take up antigens efficiently, process them and present them on their surface in a form that can induce antigen-specific T cells to proliferate and mature. This way T cells can recognize and eliminate antigen-bearing tumour cells. Dendritic cells can also induce natural killer cells (NK cells) to become active and attack tumour cells. Scientists of Medigene Immunotherapies have developed new, fast and efficient methods for preparing autologous (patient-specific) mature dendritic cells which have relevant characteristics to activate both T cells and NK cells. The dendritic cells can be loaded with various tumour antigens to treat different types of cancer and are designed for treatment of minimal residual disease or use in combination therapies.