ArQule Presents Phase 1/2 Clinical Data with ARQ 087 in Intrahepatic Cholangiocarcinoma at the 2017 American Society of Clinical Oncology (ASCO) Annual Meeting

On June 3, 2017 ArQule, Inc. (Nasdaq: ARQL) reported that data from a phase 1/2 trial with fibroblast growth factor receptor (FGFR) inhibitor, ARQ 087, presented at ASCO (Free ASCO Whitepaper) demonstrate a meaningful clinical benefit to intrahepatic cholangiocarcinoma (iCCA) patients harboring FGFR2 fusions (Press release, ArQule, JUN 3, 2017, View Source [SID1234519376]). The data show a robust response rate and prolonged duration of therapy for these patients well in excess of that reported for second-line chemotherapy. These data support future development of ARQ 087 as second-line treatment, and a registrational phase 3 trial in iCCA FGFR2 fusion positive patients is planned to begin in the third quarter of 2017. ARQ 087 is a multi-kinase inhibitor designed to preferentially inhibit the fibroblast growth factor receptor (FGFR) family.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The presentation titled "ARQ 087, an oral pan-Fibroblast Growth Factor Receptor (FGFR) inhibitor, in patients with advanced intrahepatic cholangiocarcinoma (iCCA) with FGFR2 genetic aberrations" can be viewed at View Source

ARQ 087 Results from Phase 1/2 iCCA Trial Presented at ASCO (Free ASCO Whitepaper)

The data is comprised of 35 iCCA patients harboring FGFR2 genetic alterations, of which 29 patients were FGFR2 fusion positive. All 29 of these patients were evaluable for this data presentation.
The objective response rate for iCCA FGFR2 fusion positive patients was 21% (six partial responses) and the disease control rate was 83% (six partial responses and 18 patients with stable disease). Patients were evaluated using Standard RECIST (Response Evaluation Criteria in Solid Tumors).
Clinical benefit was observed in 72% of FGFR2 fusion positive patients defined as partial response (six patients) and stable disease (15 patients) for at least 16 weeks.
The median duration of therapy observed in iCCA FGFR2 fusion positive patients was 182 days. In these same patients, the median duration of front-line chemotherapy was 119 days.
ARQ 087 showed a manageable safety profile with mostly Grade 1 and 2 adverse events.
Nine patients with FGFR2 fusions are on-going in the trial.
"Clinical evidence is accumulating on the role of FGFR inhibitors in cholangiocarcinoma and other FGFR driven tumors such as urothelial and gastric cancers," said Dr. Brian Schwartz, M.D., Head of Research and Development and Chief Medical Officer at ArQule. "We are encouraged to see that both the response rate and disease control rate were consistent throughout the trial. Patients with iCCA often have a poor prognosis for front-line treatment with chemotherapy, and there are no currently approved second-line therapeutic options."

Patients with advanced iCCA who relapse after first-line multi-agent chemotherapy have limited treatment options with poor prognosis. In recent years, FGFR2 fusions have been recognized as a potential iCCA-specific therapeutic target. The company has been granted orphan drug designation by the U.S. Food and Drug Administration and European Medicines Agency for ARQ 087 in this indication.

About Intrahepatic Cholangiocarcinoma

Cholangiocarcinoma (CCA) is the most common biliary malignancy and the second most common hepatic malignancy after hepatocellular carcinoma (HCC)1. Depending on the anatomic location, CCA is classified as intrahepatic (iCCA), perihilar (pCCA), and extrahepatic (eCCA). iCCA originates from the intrahepatic biliary ductal system and forms an intrahepatic mass. The average age adjusted incidence rate for iCCA is approximately one in 100,000 per year in the United States and Europe2,3.

About FGFR and ARQ 087

ARQ 087 is a multi-kinase inhibitor designed to preferentially inhibit the fibroblast growth factor receptor ("FGFR") family with demonstrated efficacy in FGFR2 genetic alterations. The FGFR pathway is disrupted in several ways in human cancer, thus providing numerous therapeutic targets for an inhibitor of this pathway. ARQ 087 has demonstrated in vivo inhibition of tumor growth and downstream signaling in tumors whose growth is driven by FGFR.

Signals of single agent activity with this drug were observed in phase 1a testing. Phase 1b expansion cohorts with ARQ 087 include patients with cholangiocarcinoma and adrenocortical tumors, as well as those with FGFR translocations, amplifications and mutations. Clinical development of ARQ 087 advanced into phase 2 for intrahepatic cholangiocarcinoma (iCCA) in patients with FGFR2 fusions following the observation of two confirmed responses in this patient population in the phase 1 portion of the program, and a phase 3 registrational trial is planned to begin in the third quarter of 2017 in this same patient population.

TG Therapeutics Announces Positive Data from Phase 3 GENUINE Trial of TG-1101 in Combination with Ibrutinib in Patients with High Risk Chronic Lymphocytic Leukemia at the 53rd Annual Meeting of the American Society of Clinical Oncology

On June 3, 2017 TG Therapeutics (NASDAQ:TGTX) reported positive results from its Phase 3 GENUINE trial of TG-1101 (ublituximab) plus ibrutinib in patients with previously treated high risk Chronic Lymphocytic Leukemia (CLL) (Press release, TG Therapeutics, JUN 3, 2017, View Source [SID1234519447]). Data from this trial was presented today by Dr. Jeff Sharman, Medical Director, Hematology Research, US Oncology in an oral session during the 53rd American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting in Chicago, IL.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Michael S. Weiss, Executive Chairman and Chief Executive Officer of TG Therapeutics stated, "Patients with high-risk CLL have the poorest outcomes on ibrutinib and are in need of a more efficacious treatment. We believe the data presented today demonstrate that the addition of TG-1101 to ibrutinib improves patient outcomes across multiple measures." Mr. Weiss continued, "In addition to increasing the overall number of patients that responded to treatment with ibrutinib, adding TG-1101 to ibrutinib increased the number of patients with bone marrow confirmed CR’s, MRD negativity in peripheral blood, deepened nodal responses, and resulted in fewer patients progressing on therapy. Collectively, we see the consistent pattern of enhanced benefit as providing a compelling case for combining TG-1101 with ibrutinib in these hard to treat patients with high-risk CLL. We look forward to sharing these data with the FDA later this year to discuss filing for accelerated approval. We would like to thank our investigators and their patients for their participation in this important clinical trial."

Highlight’s from this presentation include the following:

Oral Presentation: Ublituximab and ibrutinib for previously treated genetically high-risk chronic lymphocytic leukemia: Results of the GENUINE Phase 3 study

This presentation includes data from the GENUINE Phase 3 trial, a multicenter, randomized trial (NCT02301156), which assessed the efficacy and safety of TG-1101 plus ibrutinib versus ibrutinib alone in patients with high risk CLL. For the trial, high-risk was defined as having any one or more of the following centrally confirmed features: 17p deletion, 11q deletion or p53 mutation. The GENUINE study was designed to demonstrate the value of adding TG-1101, a potent next generation glycoengineered anti-CD20 monoclonal antibody to ibrutinib monotherapy in high-risk CLL, and was powered to show a statistically significant improvement in ORR of 30%, with a minimal absolute detectable difference between the two arms of approximately 20%.

The trial met its primary endpoint, demonstrating a statistically significant improvement in Overall Response Rate (ORR), as assessed by blinded independent central radiology and hematology review by iwCLL (Hallek 2008) criteria, compared to ibrutinib alone in both the Intent to Treat (ITT) population (p=0.001) and Treated population (p < 0.001). Per iwCLL guidelines, all responders required confirmation of response for a minimum duration of 2 months. The ITT population includes all 126 randomized patients (64 in the TG-1101 plus ibrutinib arm and 62 in the ibrutinib alone arm) while the Treated population includes all ITT patients that received at least one dose of either study drug (59 in the TG-1101 plus ibrutinib arm and 58 in the ibrutinib alone arm).

Patient Demographics

One hundred and twenty-six (126) patients were randomized on the GENUINE Phase 3 trial. 100% of patients were high-risk and had either 17p deletion, 11q deletion or p53 mutation. Sixty-four percent (64%) of patients in the TG-1101 plus ibrutinib arm and 66% of patients in the Ibrutinib alone arm had 17p deletion and/or a p53 mutation while 36% and 34% of patients in the TG-1101 plus ibrutinib and ibrutinib alone arms, respectively, had an 11q deletion only. The median age of patients on either arm was 67 years and the median number of prior lines of therapy for either arm was 3.

Safety & Tolerability

One hundred and seventeen (117) patients were evaluable for safety (59 patients in the TG-1101 plus ibrutinib arm, and 58 patients in the ibrutinib alone arm). The combination was well tolerated and, apart from infusion related reactions, the addition of TG-1101 did not appear to alter the safety profile of ibrutinib monotherapy. Neutropenia, occurring in 9% of patients, was the most commonly reported Grade 3/4 Adverse Event (AE) in the combination arm, followed by infusion related reactions and anemia, each reported in 5% of patients. Notably, the majority of infusion related reactions (IRR) were Grade 1 or 2 in severity, with only 5% Grade 3/4 IRR observed. Median follow-up for this study was approximately 11.4 months.

Clinical Activity

Response Rates

TG-1101 plus Ibrutinib Ibrutinib P-value
Treated Population (n) n=59 n=58
Overall Response Rate (ORR) 78 % 45 % P < 0.001
Complete Response (CR) 7 % 0 % NS
MRD-Negative 19%
(n=53) * 2%
(n=53) * P < 0.01

*Patients evaluable for MRD included those enrolled > 4 months prior to data cutoff date of February 15, 2017. MRD analyzed by central lab, 7-color flow cytometry

In addition to the improvements in ORR, CR and MRD-negativity, a trend in improvement of Progression Free Survival (PFS) was observed in the combination arm of TG-1101 plus ibrutinib as compared to ibrutinib alone (Hazard Ratio = 0.559; p=NS).

ABOUT THE PHASE 3 GENUINE STUDY

The Phase 3 GENUINE study is a randomized, open label, multicenter clinical trial to evaluate the safety and efficacy of TG-1101 (ublituximab) plus ibrutinib compared to ibrutinib alone in adult patients with high-risk Chronic Lymphocytic Leukemia (CLL) who received at least one prior therapy for their disease.

The study was conducted at 160 clinical trial sites in the US and Israel and randomized 126 patients. Patients received ibrutinib orally at 420 mg once daily in both arms and in the combination arm those patients also received intravenous infusions of TG-1101 at 900 mg dosed on days 1, 8 and 15 of cycle 1 and day 1 of cycles 2-6. Patients in the combination arm who had not progressed received quarterly infusions of TG-1101 maintenance at 900 mg.

PRESENTATION DETAILS:

The above referenced presentation is now available on the Publications page, located within the Pipeline section, of the Company’s website at www.tgtherapeutics.com/publications.cfm.

Opdivo (nivolumab) in Combination with Yervoy (ipilimumab) Demonstrated Promising Activity in Previously Treated Patients with dMMR or MSI-H Metastatic Colorectal Cancer in Phase 2 CheckMate -142 Study

On June 3, 2017 Bristol-Myers Squibb Company (NYSE:BMY) reported interim data from CheckMate -142, a Phase 2, multi-cohort trial evaluating Opdivo (nivolumab) monotherapy or in combination with Yervoy (ipilimumab) for the treatment of patients with DNA mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) (Press release, Bristol-Myers Squibb, JUN 3, 2017, View Source [SID1234519381]). These results from the Opdivo and Yervoy combination cohort of the trial included 84 patients who received their first dose at least 6 months prior to analysis. The primary endpoint of investigator-assessed objective response rate (ORR) was 54.8% (95% CI: 43.5, 65.7). Responses were sustained up to 15.9 months and 85% of responses were ongoing; median duration of response was not yet reached. The 9-month overall survival (OS) rate was 87.6% (95% CI: 78.1, 93.1) and median OS had not been reached at the time of analysis. The safety profile of the Opdivo plus Yervoy combination included 28.6% of patients with Grade 3/4 treatment-related adverse events (AEs). These data from Abstract #3531 will be presented today from 8:00–11:30 AM CDT in Hall A at the American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting 2017.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The clinically meaningful survival and response data for patients with dMMR or MSI-H colorectal cancer treated with Opdivo in combination with Yervoy are very promising," said Thierry Andre, M.D., Head of the Medical Oncology Department in St. Antoine Hospital, Assistance Publique Hôpitaux de Paris. "These interim data are important as they build on the study results observed with Opdivo monotherapy in these patients and show the potential of an Immuno-Oncology combination in this advanced type of colorectal cancer for which there is a significant unmet need."

When the proteins that repair mismatch errors in DNA replication are missing or non-functional, dMMR occurs, and leads to MSI-H tumors in certain types of cancer, including CRC. Approximately 5% of metastatic CRC patients have dMMR or MSI-H biomarkers, and these patients are less likely to benefit from conventional chemotherapy than patients whose tumors are mismatch repair proficient.

"Through our robust Immuno-Oncology research and development efforts, we are investigating predictive biomarkers like dMMR or MSI-H with the goal of tailoring treatment approaches that provide the maximum benefit for individual patients," said Ian M. Waxman, M.D., development lead, Gastrointestinal Cancers, Bristol-Myers Squibb. "We are encouraged by these interim results for Opdivo plus Yervoy, and we look forward to further evaluating the efficacy and safety of our Immuno-Oncology combination therapies in metastatic colorectal cancer, as well as across a broad range of other tumor types."

About CheckMate -142 (Abstract #3531)

CheckMate -142 is an international Phase 2, multi-cohort, open-label, non-comparative trial evaluating Opdivo monotherapy or in combination with Yervoy in previously treated recurrent or metastatic colorectal cancer (CRC), including patients with and without DNA mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H). In results from the Opdivo monotherapy cohort presented at the 2017 Gastrointestinal Cancers Symposium, the investigator-assessed objective response rate (ORR) was 31.1% and the 12 month overall survival (OS) rate was 73.8%. In this cohort, Opdivo was well tolerated with a safety profile consistent with that reported in other solid tumors and no new safety signals were observed.

In the combination cohort, the primary endpoint is investigator-assessed ORR using the Response Evaluation Criteria In Solid Tumors (RECIST) version 1.1. Other key endpoints included ORR by blinded independent central review (BICR), progression-free survival (PFS), OS and safety. Patients were treated with Opdivo (3 mg/kg) and Yervoy (1 mg/kg) every three weeks for four doses then Opdivo every two weeks until disease progression, death or unacceptable toxicity. Of the 84 patients treated, 78% had two or more prior lines of therapy.

Treatment-related adverse events (AEs) of any grade occurred in 67.9% of patients. Treatment-related AEs were managed, with 13.1% of patients discontinuing treatment. The most common AEs of any grade occurring in ≥10% of MSI-H patients were diarrhea (23.8%), fatigue (16.7%), aspartate aminotransferase increase (16.7%), pyrexia (15.5%), pruritus (15.5%), alanine aminotransferase increase (14.3%), nausea (14.3%), hyperthyroidism (13.1%) and hypothyroidism (13.1%). Grade 3/4 AEs occurred in 28.6% of patients. No treatment-related deaths were reported.

About Colorectal Cancer and dMMR or MSI-H Colorectal Cancer

Colorectal cancer (CRC) is cancer that develops in the colon or the rectum, which are parts of the body’s digestive or gastrointestinal system. Colorectal cancer is the third most common form of cancer, with a worldwide incidence of 1.4 million cases, and is the fourth most common cause of cancer deaths. In the U.S., CRC is the second leading cause of cancer-related deaths among men and women combined, with more than 135,000 new cases expected to be diagnosed annually.

DNA mismatch repair deficiency (dMMR) occurs when the proteins that repair mismatch errors in DNA replication are missing or non-functional, which leads to microsatellite instability-high (MSI-H) tumors in certain types of cancer, including CRC. Approximately 15% of CRC patients and 5% of metastatic CRC patients have dMMR or MSI-H biomarkers. Patients with dMMR or MSI-H metastatic CRC are less likely to benefit from conventional chemotherapy and typically have a poor prognosis, with lower survival rates on conventional chemotherapy than patients whose tumors are mismatch repair proficient. Routine testing to confirm dMMR or MSI-H status should be conducted for all CRC patients.

Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research

At Bristol-Myers Squibb, patients are at the center of everything we do. Our vision for the future of cancer care is focused on researching and developing transformational Immuno-Oncology (I-O) medicines for hard-to-treat cancers that could potentially improve outcomes for these patients.

We are leading the scientific understanding of I-O through our extensive portfolio of investigational compounds and approved agents. Our differentiated clinical development program is studying broad patient populations across more than 50 types of cancers with 14 clinical-stage molecules designed to target different immune system pathways. Our deep expertise and innovative clinical trial designs position us to advance I-O/I-O, I-O/chemotherapy, I-O/targeted therapies and I-O/radiation therapies across multiple tumors and potentially deliver the next wave of therapies with a sense of urgency. We also continue to pioneer research that will help facilitate a deeper understanding of the role of immune biomarkers and how patients’ individual tumor biology can be used as a guide for treatment decisions throughout their journey.

We understand making the promise of I-O a reality for the many patients who may benefit from these therapies requires not only innovation on our part but also close collaboration with leading experts in the field. Our partnerships with academia, government, advocacy and biotech companies support our collective goal of providing new treatment options to advance the standards of clinical practice.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol-Myers Squibb’s scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has enrolled more than 25,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 60 countries, including the United States, the European Union and Japan. In October 2015, the company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

U.S. FDA-APPROVED INDICATIONS FOR OPDIVO

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated pneumonitis occurred in 6% (25/407) of patients.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated hepatitis occurred in 13% (51/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Neuropathies

In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In patients receiving OPDIVO with YERVOY, hypophysitis occurred in 9% (36/407) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In patients receiving OPDIVO with YERVOY, adrenal insufficiency occurred in 5% (21/407) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In patients receiving OPDIVO with YERVOY, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving OPDIVO with YERVOY. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In patients receiving OPDIVO with YERVOY, diabetes occurred in 1.5% (6/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients.

Immune-Mediated Skin Adverse Reactions and Dermatitis

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated rash occurred in 22.6% (92/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one patient receiving OPDIVO with YERVOY (0.2%) after 1.7 months of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Across clinical trials of OPDIVO the following clinically significant immune-mediated adverse reactions occurred in <1.0% of patients receiving OPDIVO: uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), myositis, myocarditis, rhabdomyolysis, motor dysfunction, vasculitis, and myasthenic syndrome.

Infusion Reactions

OPDIVO can cause severe infusion reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In patients receiving OPDIVO monotherapy, infusion-related reactions occurred in 6.4% (127/1994) of patients. In patients receiving OPDIVO with YERVOY, infusion-related reactions occurred in 2.5% (10/407) of patients.

Complications of Allogeneic HSCT after OPDIVO

Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic HSCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.

Embryo-Fetal Toxicity

Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO . The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO (n=313) arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO were cough and dyspnea at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥ 20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%).

In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see U.S. Full Prescribing Information for OPDIVO

Anti-LAG-3 (BMS-986016) in Combination with Opdivo (nivolumab) Showed Activity in Patients with Melanoma Who Were Relapsed or Refractory to Anti-PD-1/PD-L1 Therapy

On June 3, 2017 Bristol-Myers Squibb Company (NYSE:BMY) reported proof-of-concept data showing preliminary efficacy for BMS-986016, an investigational anti-lymphocyte-activation gene 3 (LAG-3) therapy in combination with Opdivo (nivolumab) in patients with advanced melanoma previously treated with anti-PD-1/PD-L1 therapy (n=55) (Press release, Bristol-Myers Squibb, JUN 3, 2017, View Source [SID1234519382]). In the ongoing expansion study of heavily pretreated patients who were refractory to or relapsed on anti-PD1/PDL1 therapy, the objective response rate (ORR) was 12.5 percent in evaluable patients (n=48). Patients with LAG-3 expression in at least 1 percent (n=25) of tumor-associated immune cells within the tumor margin had a nearly three-fold improvement in ORR compared to patients with less than 1 percent LAG-3 expression (n=14) (20 percent and 7.1 percent, respectively). These data will be presented today, Saturday, June 3, at the 53rd Annual Meeting of the American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) in a poster from 1:15 p.m. – 4:45 p.m. CDT and poster discussion from 4:45 p.m. – 6 p.m. CDT (Abstract #9520).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

For some tumor types, immunotherapy is becoming a standard of care, but there are growing numbers of patients who are refractory to or relapse on anti-PD-1/PD-L1 therapy and these patients typically have poor outcomes. These proof-of-concept data show that combining anti-LAG-3 with Opdivo in PD-1/PD-L1 refractory patients may help patients overcome resistance and restore T cell function.

"As a potentially synergistic immune pathway to PD-1/PD-L1, LAG-3 has emerged as an immune checkpoint receptor that regulates T cell function and whose inhibition may increase benefits for patients," said Paolo Ascierto, M.D., Istituto Nazionale Tumori Fondazione Pascale of Naples, Italy. "These results indicate that BMS-986016 in combination with Opdivo may offer clinical benefit, particularly for patients whose tumors contain immune cells that express LAG-3. Further investigation is warranted to understand the impact of this combination as well as the utility of LAG-3 as an immune biomarker."

"Advances in immunotherapy have been transformational for many cancer patients, but unfortunately some patients do not respond well or even relapse after an initial response to treatment," said Fouad Namouni, M.D. head of Oncology Development, Bristol-Myers Squibb. "Across our portfolio, we are actively working to characterize the underlying biology for anti-PD-1/PD-L1 resistant tumors and to determine predictive biomarkers to inform rational treatment combinations. We are very encouraged by these results demonstrating a potential role for anti-LAG3 in this setting and look forward to the ongoing broader investigation of LAG-3 as an alternative therapeutic target and predictive biomarker."

Bristol-Myers Squibb is developing an oncology pipeline of more than 21 clinical agents with a range of mechanisms and translational approaches, applying evidence-based scientific understanding of the complex and multifactorial immune system.

About the Study

CA224-020 is a Phase 1/2a open label, dose escalation and cohort expansion study of the safety, tolerability and efficacy of an anti-LAG-3 monoclonal antibody in combination with Opdivo in advanced solid tumors. In the study, patients received BMS-986016 80 mg plus Opdivo 240 mg IV once every two weeks.

Primary objectives were safety and objective response rate (ORR; complete [CR] + partial [PR] response), disease control rate (DCR; CR + uCR + PR + uPR + stable disease [SD] > 12 weeks), and duration of response (RECIST v1.1).

As of data cut-off, 212 patients have been treated, including 55 patients with melanoma with prior anti-PD-1/PD-L1 therapy, of which 48 were response evaluable. Treatment-related adverse events of any grade occurred in 45 percent of patients, with 9 percent of patients experiencing Grade 3/4 adverse events.

The data reported at ASCO (Free ASCO Whitepaper) pertain to an expansion cohort in melanoma.

About LAG-3

Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint receptor protein found on the cell surface of effector T cells and regulatory T cells (Tregs) and functions to control T cell response, activation and growth. Preclinical studies suggest that inhibiting LAG-3 allows T cells to regain their cytotoxic function and potentially affect tumor growth. LAG-3 expression is also being evaluated as a biomarker to predict response to treatment. Early research suggests that targeting the LAG-3 pathway in combination with other potentially complementary immune pathways may be a key strategy to more effectively activate the antitumor immune response.

Bristol-Myers Squibb is evaluating its anti-LAG-3 BMS-986016 in clinical trials in combination with other agents in a variety of tumor types.

Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research

At Bristol-Myers Squibb, patients are at the center of everything we do. Our vision for the future of cancer care is focused on researching and developing transformational Immuno-Oncology (I-O) medicines for hard-to-treat cancers that could potentially improve outcomes for these patients.

We are leading the scientific understanding of I-O through our extensive portfolio of investigational compounds and approved agents. Our differentiated clinical development program is studying broad patient populations across more than 50 types of cancers with 14 clinical-stage molecules designed to target different immune system pathways. Our deep expertise and innovative clinical trial designs position us to advance I-O/I-O, I-O/chemotherapy, I-O/targeted therapies and I-O/radiation therapies across multiple tumors and potentially deliver the next wave of therapies with a sense of urgency. We also continue to pioneer research that will help facilitate a deeper understanding of the role of immune biomarkers and how patients’ individual tumor biology can be used as a guide for treatment decisions throughout their journey.

We understand making the promise of I-O a reality for the many patients who may benefit from these therapies requires not only innovation on our part but also close collaboration with leading experts in the field. Our partnerships with academia, government, advocacy and biotech companies support our collective goal of providing new treatment options to advance the standards of clinical practice.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol-Myers Squibb’s scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has enrolled more than 25,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 60 countries, including the United States, the European Union and Japan. In October 2015, the company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

INDICATIONS

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated pneumonitis occurred in 6% (25/407) of patients.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated hepatitis occurred in 13% (51/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Neuropathies

In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In patients receiving OPDIVO with YERVOY, hypophysitis occurred in 9% (36/407) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In patients receiving OPDIVO with YERVOY, adrenal insufficiency occurred in 5% (21/407) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In patients receiving OPDIVO with YERVOY, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving OPDIVO with YERVOY. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In patients receiving OPDIVO with YERVOY, diabetes occurred in 1.5% (6/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients.

Immune-Mediated Skin Adverse Reactions and Dermatitis

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated rash occurred in 22.6% (92/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one patient receiving OPDIVO with YERVOY (0.2%) after 1.7 months of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Across clinical trials of OPDIVO the following clinically significant immune-mediated adverse reactions occurred in <1.0% of patients receiving OPDIVO: uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), myositis, myocarditis, rhabdomyolysis, motor dysfunction, vasculitis, and myasthenic syndrome.

Infusion Reactions

OPDIVO can cause severe infusion reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In patients receiving OPDIVO monotherapy, infusion-related reactions occurred in 6.4% (127/1994) of patients. In patients receiving OPDIVO with YERVOY, infusion-related reactions occurred in 2.5% (10/407) of patients.

Complications of Allogeneic HSCT after OPDIVO

Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic HSCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.

Embryo-Fetal Toxicity

Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO . The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO (n=313) arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO were cough and dyspnea at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥ 20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%).

In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see U.S. Full Prescribing Information for OPDIVO and YERVOY, including Boxed WARNING regarding immune-mediated adverse reactions for YERVOY.

Bristol-Myers Squibb and QIAGEN Sign Agreement for Use of NGS Technology to Develop Gene Expression Profiles for Immuno-Oncology Therapies

On June 3, 2017 Bristol-Myers Squibb Company (NYSE:BMY) and QIAGEN (NASDAQ:QGEN; Frankfurt Prime Standard:QIA) reported that they have signed an agreement to explore the use of next-generation sequencing (NGS) technology to develop gene expression profiles (GEPs) as predictive or prognostic tools for use with Bristol-Myers Squibb novel immuno-oncology (I-O) therapies in cancer treatment (Press release, Bristol-Myers Squibb, JUN 3, 2017, View Source [SID1234519383]). This will leverage the combination of Bristol-Myers Squibb’s portfolio of I-O therapies with QIAGEN’s proven track record in developing and commercializing companion and complementary diagnostics as well as QIAGEN’s portfolio of NGS technologies. I-O therapies offer a novel way to treat cancer by using drugs to target the body’s immune system to help fight cancer.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

QIAGEN and Bristol-Myers Squibb intend to develop GEPs for several Bristol-Myers Squibb I-O molecules under the initial agreement. The companies also plan to enter into a further agreement to develop diagnostic products using the jointly developed GEPs and to expand the use of NGS technology with other Bristol-Myers Squibb I-O therapies.

"Greater precision in the treatment of cancer may enable faster decision making to identify which patient populations are most likely to derive benefit from our immuno-oncology agents," said Fouad Namouni, M.D., head of Development, Oncology, Bristol-Myers Squibb. "We believe working with QIAGEN will help develop better diagnostic tools to target the most appropriate immunotherapies across a number of different tumor types."

"We are very pleased to work with Bristol-Myers Squibb to potentially create what could be the first-ever NGS-based companion or complementary diagnostic to provide key insights for personalized decision-making in the rapidly expanding area of immuno-oncology," said Peer M. Schatz, Chief Executive Officer of QIAGEN. "Our teams at QIAGEN are looking forward to working with Bristol-Myers Squibb to leverage the power of NGS technology to potentially improve outcomes for patients."

QIAGEN and Bristol-Myers Squibb have been partnering since 2009. A key milestone in this partnership was the FDA approval of the Therascreen KRAS companion/complementary diagnostic assay in 2012.

Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research

At Bristol-Myers Squibb, patients are at the center of everything we do. Our vision for the future of cancer care is focused on researching and developing transformational Immuno-Oncology (I-O) medicines for hard-to-treat cancers that could potentially improve outcomes for these patients.

We are leading the scientific understanding of I-O through our extensive portfolio of investigational compounds and approved agents. Our differentiated clinical development program is studying broad patient populations across more than 50 types of cancers with 14 clinical-stage molecules designed to target different immune system pathways. Our deep expertise and innovative clinical trial designs position us to advance I-O/I-O, I-O/chemotherapy, I-O/targeted therapies and I-O/radiation therapies across multiple tumors and potentially deliver the next wave of therapies with a sense of urgency. We also continue to pioneer research that will help facilitate a deeper understanding of the role of immune biomarkers and how patients’ individual tumor biology can be used as a guide for treatment decisions throughout their journey.

We understand making the promise of I-O a reality for the many patients who may benefit from these therapies requires not only innovation on our part but also close collaboration with leading experts in the field. Our partnerships with academia, government, advocacy and biotech companies support our collective goal of providing new treatment options to advance the standards of clinical practice.

QIAGEN GeneReader NGS System

The GeneReader NGS System provides the first true Sample to Insight NGS workflow for laboratories worldwide – and increasingly also pharmaceutical companies – to take advantage of the power of NGS technology. The system’s integrated bioinformatics for analysis and interpretation of NGS data, as well as a family of gene panels under the GeneRead QIAact brand, enable laboratories to identify gene variations linked to cancers and to deliver actionable molecular insights. The capabilities of this unique system also include high-sensitivity detection in liquid biopsy samples, compatibility with the QIAsymphony automation platform for high-throughput sample processing, and software integration with leading Laboratory Information Management Systems (LIMS). The current version of the GeneReader NGS System is available in the United States for research use only.