The 12-month analysis from Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT): A phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma.

The hedgehog pathway inhibitor sonidegib demonstrated meaningful tumor shrinkage in more than 90% of patients with locally advanced basal cell carcinoma (BCC) or metastatic BCC in the BCC Outcomes with LDE225 Treatment study.
This report provides long-term follow-up data collected up to 12 months after the last patient was randomized.
In this multicenter, randomized, double-blind phase II study, patients were randomized 1:2 to sonidegib 200 or 800 mg. The primary end point was objective response rate assessed by central review.
Objective response rates in the 200- and 800-mg arms were 57.6% and 43.8% in locally advanced BCC and 7.7% and 17.4% in metastatic BCC, respectively. Among the 94 patients with locally advanced BCC who responded, only 18 progressed or died and more than 50% had responses lasting longer than 6 months. In addition, 4 of 5 responders with metastatic BCC maintained an objective response. Grade 3/4 adverse events and those leading to discontinuation were less frequent with sonidegib 200 versus 800 mg (38.0% vs 59.3%; 27.8% vs 37.3%, respectively).
No placebo or comparator arms were used because sonidegib demonstrated efficacy in advanced BCC in a phase I study, and the hedgehog pathway inhibitor vismodegib was not yet approved.
With longer follow-up, sonidegib demonstrated sustained tumor responses in patients with advanced BCC.
Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Cancer Research UK shortlists teams for £20m Grand Challenge to tackle cancer’s toughest problems

On April 14, 2016 Cancer Research UK reported that it has shortlisted nine teams for the final stages of its £20m Grand Challenge award* – the world’s most ambitious cancer grant helping scientists attack some of the hardest unanswered questions in cancer research (Press release, Cancer Research UK, APR 14, 2016, View Source [SID:1234510830]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

World-class multi-disciplinary researchers representing 15 countries and 50 organisations have collaborated to make the shortlist**. The shortlisted teams are led by:

Professor Roy Bicknell from the University of Birmingham, UK, with collaborators from the USA, UK, Netherlands, Sweden and Switzerland will research developing vaccines to prevent non-viral cancers.
Professor Alan Rickinson from the University of Birmingham, UK with collaborators from the USA, Netherlands, UK, Australia, Germany, Switzerland, Japan and China will research how to eradicate EBV-induced cancers from the world.
Professor Sir Mike Stratton from the Wellcome Trust Sanger Institute, UK with collaborators from France, the USA and UK will research how unusual patterns of mutation are induced by different cancer-causing events.
Dr Jelle Wesseling from the Netherlands Cancer Institute, The Netherlands with collaborators from the USA, UK and Netherlands will research how to distinguish between lethal need treating and non-lethal cancers that don’t.
Dr Surinder Sahota from the University of Southampton, UK with collaborators from the USA, UK, Spain and Germany will research how to distinguish between lethal need treating and non-lethal cancers that don’t.
Professor Freddie Hamdy from the University of Oxford, UK with collaborators from Finland, the USA and UK will research how to distinguish between lethal need treating and non-lethal cancers that don’t.
Dr Josephine Bunch from the National Physical Laboratory, UK with collaborators from the UK will find a way of mapping tumour at the molecular and cellular level.
Professor Greg Hannon from the University of Cambridge, UK with collaborators from Switzerland, Ireland, Canada, the USA and UK will find a way of mapping tumour at the molecular and cellular level.
Professor Ehud Shapiro from the Weizmann Institute, Israel with collaborators from Israel, the UK and USA will find a way of mapping tumour at the molecular and cellular level.
Sir Harpal Kumar, Cancer Research UK’s chief executive, said: "One of the driving forces behind our Grand Challenge is the ambition to unite researchers from all sciences around the world so that they can come up with game-changing ideas to solve cancer’s most challenging questions. We’re delighted that our shortlist includes so many talented, multi-disciplinary teams.

"We’ll award at least one of these teams the first ever Grand Challenge later this year and hope that this global approach will go on to help the 14.1 million people diagnosed with cancer around the world annually."

Jim Elliott, member of the Grand Challenge patient panel, said: "When reviewing the applications for the Grand Challenge initiative I was struck by scientists’ enthusiasm to work with people they hadn’t worked with before to tackle the challenges in new ways. Some of the teams were really pioneering – spanning the globe and the sciences. I’m honoured to have been part of this innovative way to research cancer and for the opportunity to make sure that the research coming out of Grand Challenge puts patients at the heart of things."

10-Q/A [Amend] – Quarterly report [Sections 13 or 15(d)]

(Filing, 10-K, TapImmune, 2015, APR 14, 2016, View Source [SID:1234510877])

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Noncanonical NF-κB Signaling in Health and Disease.

Noncanonical NF-κB signaling differs from canonical NF-κB signaling by being activated through different cell surface receptors, cytoplasmic adaptors, and NF-κB dimers. Under normal physiological conditions, this noncanonical pathway has been implicated in diverse biological processes, including lymphoid organogenesis, B cell maturation, osteoclast differentiation, and various functions of other immune cells. Recently, dysfunction of this pathway has also been causally associated with numerous immune-mediated pathologies and human malignancies. Here, we summarize the core elements as well as the recently identified novel regulators of the noncanonical NF-κB signaling pathway. The involvement of this pathway in different pathologies and the potential therapeutic options that are currently envisaged are also discussed.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Antimitotic and Non-mitotic Effects of Eribulin Mesilate in Soft Tissue Sarcoma.

Eribulin mesilate (eribulin), a first-in-class halichondrin B-based microtubule dynamics inhibitor, has been shown to promote vascular remodeling and reversal of epithelial-mesenchymal transition (EMT) apart from its antimitotic activity in breast cancer models.
Anti-proliferative activity of eribulin was examined in vitro and in vivo in several human soft tissue sarcoma (STS) cell lines. To assess tumor blood perfusion and phenotypic changes, eribulin was investigated in a leiomyosarcoma xenograft and in vitro in liposarcoma and leiomyosarcoma cell lines.
Eribulin showed anti-proliferative activity in vitro against all six cell lines investigated, with 50% inhibitory concentration values of around 1 nmol/l, as well as significant antitumor activity against four xenografts in vivo. In addition, eribulin significantly enhanced tumor blood perfusion in xenografts and induced morphological changes and up-regulation of differentiation marker genes.
In pre-clinical models, eribulin showed anti-proliferative activity against a variety of histopathological subtypes of STS. Eribulin might also cause tumor vasculature remodeling to enhance tumor blood perfusion and induce tumor cell differentiation.
Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!