MabVax Therapeutics corporate presentation

On May 3, 2018, MabVax Therapeutics Holdings, Inc. (the "Company") updated and made available its corporate presentation (Presentation, MabVax, MAY 3, 2018, View Source [SID1234526091])

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

10-Q – Quarterly report [Sections 13 or 15(d)]

Lpath has filed a 10-Q – Quarterly report [Sections 13 or 15(d)] with the U.S. Securities and Exchange Commission .

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Ferring signs global agreement to commercialise novel gene therapy for bladder cancer patients

On May 3, 2018 Ferring Pharmaceuticals reported the signing of an agreement giving the company the option to secure global commercialisation rights to nadofaragene firadenovec/Syn3 (rAd-IFN/Syn3), a novel gene therapy being developed by FKD Therapies Oy (FKD) as a treatment for patients with high-grade non-muscle invasive bladder cancer (NMIBC), who are unresponsive to Bacillus Calmette-Guérin (BCG) therapy (Press release, Ferring Pharmaceuticals, MAY 3, 2018, View Source [SID1234551851]). This option is exercisable on marketing approval from the US FDA. Ferring will create a new US oncology division with the specialist knowledge and presence to introduce novel advanced therapies to the market.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

rAd-IFN/Syn3 is currently undergoing Phase 3 development in the US under the sponsorship of Finnish gene therapy specialists FKD. The results of the earlier Phase 2 trial, published in the Journal of Clinical Oncology, reported 35% of BCG unresponsive NMIBC bladder cancer patients given one dose of rAd-IFN/Syn3 every three months, were free of high-grade disease at one year1. The ongoing Phase 3 study is designed to establish the efficacy and safety of the product. rAd-IFN/Syn3 has been awarded Fast Track and Breakthrough Therapy designations by the FDA.

"We are excited about the potential to commercialise rAd-IFN/Syn3, a novel gene therapy for bladder cancer patients," said Michel Pettigrew, President of the Executive Board and Chief Operating Officer, Ferring Pharmaceuticals. "The gene therapy sector is growing rapidly and building a presence in this specialised area is a very positive opportunity for Ferring."

Bladder cancer is one of the most frequently occurring cancers with an estimated 430,000 new cases being reported worldwide each year2. It is the fourth most common cancer in men in the US3 and is the most expensive cancer to treat on a life-time basis, with a high burden on patients, their relatives and healthcare systems4. In high-grade NMIBC patients, BCG is the gold standard treatment and although effective, over 60% of cases eventually re-occur5, 6. The outcome for such patients is poor, with total cystectomy (complete removal of the bladder) to prevent the cancer spreading to other organs generally being the next treatment option. As such, the BCG unresponsive population is one of high unmet clinical need.

"Today, bladder cancer patients have very limited medical options and new treatments that delay or prevent total removal of the bladder and improve clinical outcomes are urgently needed for patients," said Professor Klaus Dugi, Chief Medical Officer, Ferring Pharmaceuticals. "Phase 2 clinical results for rAd-IFN/Syn3 were very encouraging and we look forward to the Phase 3 data."

Gene therapy is one of a new class of therapeutic treatments known as advanced therapy medicinal products. rAd-IFN/Syn3 is built on adenoviral vector technology, a non-integrating vector, and results in enhanced expression of the therapeutic protein interferon alfa 2b. To date, it has completed three clinical trials in the US.

About rAd-IFN/Syn3

rAd-IFN/Syn3 (nadofaragene firadenovec/Syn3) is an investigational gene therapy consisting of an adenovirus containing the gene interferon alfa-2b. It is administered by catheter into the bladder, where the virus enters the cells of the bladder wall. Inside the cells, the virus breaks down leaving the active gene to do its work. The internal gene/DNA machinery of the cells picks up the gene and translates its DNA sequence, resulting in the cells secreting high quantities of interferon alfa-2b protein, a naturally occurring protein the body uses to fight cancer. This novel gene therapy approach turns the patient’s own bladder wall cells into multiple interferon microfactories, enhancing the body’s natural defences against the cancer. The Phase 3 trial for rAd-IFN/Syn3 opened in 2016 with up to 150 patients to be enrolled across 35 centers in the US.

NEOMED Institute partners with McGill University to identify small molecule inhibitors of a novel oncology target: Cut-Like Homeobox 1 (CUX1)

On May 3, 2018 The NEOMED Institute reported that it has entered into a development collaboration with McGill University (Press release, NEOMED, MAY 3, 2018, View Source [SID1234527387]). Kemal Payza, Senior Project Director at NEOMED Institute will collaborate with Professor Alain Nepveu, Professor at the Goodman Cancer Research Centre and Departments of Oncology, Biochemistry and Medicine at McGill University, to discover new therapeutic small molecules to inhibit the protein target, Cut-Like Homeobox 1 (CUX1).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"I am delighted that we have added this new drug discovery project into NEOMED’s pipeline and I look forward to working with Dr. Nepveu on this very exciting target. Dr. Nepveu is a renowned expert on the DNA repair function of CUX1, a mechanism upon which RAS-driven cancer cells are acutely dependent for their survival. This is very important, because currently there is no treatment that targets RAS-driven tumours," explains Payza.

"This academic/industrial collaboration that we have entered into with the NEOMED Institute will permit us to rapidly leverage our biological understanding of this important target to develop small molecule drug candidates. A drug capable of interfering with the ability of CUX1 to participate in DNA repair would target many types of cancers in which reactive oxygen species are produced as a consequence of mutation in a RAS gene or any oncogene that activates the RAS pathway; such activation is seen in 59% of pancreatic cancers and some 30% of human cancers overall," adds Professor Nepveu.

"This collaboration exemplifies, once again, the ability of NEOMED to deliver on its mission to help advance academic innovation and excellence by leveraging our industrial drug development experience and expertise. We look forward to collaborating with world-leading experts, like Professor Nepveu and Zubaidah Ramdzan, to translate their science into therapeutic options for patients within the Canadian ecosystem," concludes Donald Olds, President & CEO of NEOMED Institute.

About CUX1
Activation of the RAS pathway in cancer cells leads to higher production of reactive oxygen species, which cause DNA damage by oxidation. In turn, sustained DNA damage triggers cellular senescence. Cancer cells can adapt to such oxidative DNA damage by increasing their expression of CUX1, which stimulates the activities of two enzymes that repair oxidized bases in DNA. Knocking down the CUX1 protein has been found to kill all cancer cells that have high levels of reactive oxygen species (ROS). Thus, small molecules that inhibit the ability of CUX1 to stimulate those critical DNA repair enzymes would be expected to provide therapeutic benefit to patients with RAS-driven cancers. While therapeutic approaches targeting various aspects of the DNA damage response are strategically important in cancer, direct inhibition of base excision repair enzymes can cause severe adverse effects on normal cells. In contrast, CUX1 is not essential to normal cells, but is absolutely required for survival in situations of severe genotoxic stress such as that caused by reactive oxygen species in RAS-driven cancer cells or by DNA-damaging cancer treatments. Thus, small molecules that inhibit the ability of CUX1 to stimulate base excision repair enzymes are expected to treat RAS-driven cancers with an improved therapeutic window.

Athenex, Inc. to Report First Quarter Earnings Results on May 14, 2018

On May 3, 2018 Athenex, Inc. (Nasdaq:ATNX), a global biopharmaceutical company dedicated to the discovery, development and commercialization of novel therapies for the treatment of cancer and related conditions, reported that it will release first quarter 2018 earnings results on May 14, 2018 (Press release, Athenex, MAY 3, 2018, View Source;p=RssLanding&cat=news&id=2346736 [SID1234526019]). The Company will host a conference call and audio webcast on Monday, May 14, 2018 at 9:00 a.m. Eastern Time.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

To participate in the call, dial (855) 227-0567 (domestic) or (612) 979-9912 (international) fifteen minutes before the conference call begins and reference the conference passcode 9093904. A replay will be available approximately one hour after the recording through Monday, May 21, 2018 and can be accessed by dialing (855) 859-2056. The live conference call and replay can also be accessed via audio webcast at the Investor Relations section of the Company’s website, located at www.athenex.com. An archive will be available at this website until June 14, 2018.