Opdivo Plus Low-Dose Yervoy Combination Reduces the Risk of Progression or Death by 42% Versus Chemotherapy in First-Line Lung Cancer Patients with High Tumor Mutational Burden (TMB)

On April 16, 2018 Bristol-Myers Squibb Company (NYSE: BMY) reported initial results from the pivotal Phase 3 study, CheckMate -227, evaluating the Opdivo (nivolumab) 3 mg/kg plus low-dose Yervoy (ipilimumab, 1 mg/kg) combination in first-line advanced non-small cell lung cancer (NSCLC) patients with high tumor mutational burden (TMB) ≥10 mutations/megabase (mut/Mb) (Press release, Bristol-Myers Squibb, APR 16, 2018, View Source [SID1234525336]). In the study, the combination demonstrated a superior benefit for the co-primary endpoint of progression-free survival (PFS) versus chemotherapy (HR 0.58; 97.5% CI: 0.41 to 0.81; p=0.0002). The PFS benefit was observed regardless of PD-L1 expression levels and in both squamous and non-squamous tumor histology. Additionally, based on an early descriptive analysis, encouraging overall survival was observed with the combination versus chemotherapy in patients with high TMB ≥10 mut/Mb (HR 0.79; 95% CI: 0.56 to 1.10).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"CheckMate -227 is the first Phase 3 study to demonstrate the important clinical benefit of combining two immunotherapy agents to treat first-line NSCLC patients with high TMB," said Matthew D. Hellmann, M.D., study investigator and medical oncologist at Memorial Sloan Kettering Cancer Center. "Results demonstrated that first-line nivolumab plus ipilimumab can provide frequent, deep and durable responses compared with chemotherapy in patients with NSCLC who have TMB ≥10 mut/Mb. The trial also supports the rationale for molecular testing to determine potential biomarkers in patients with lung cancer."

These data were featured today during the official press program at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting 2018 in Chicago (Abstract #CT077). Findings will be presented at 11:35-11:55 AM CDT during the Clinical Trials Plenary Session, Immunotherapy Combinations: The New Frontier in Lung Cancer, and simultaneously published in The New England Journal of Medicine.

"Lung cancer is a highly complex disease, defined by multiple subtypes, making it increasingly important to define a more precise treatment approach for this disease," said Sabine Maier, development lead, thoracic cancers, Bristol-Myers Squibb. "We are excited to have advanced the science by establishing in this study that TMB was an important biomarker that predicted which first-line lung patients experienced a clinically meaningful progression-free survival benefit with a chemotherapy-sparing option, Opdivo plus low-dose Yervoy combination. These results are an example of our goal to understand each patient type through our leading translational research capabilities."
Grade 3-4 treatment-related adverse events (AEs) with the combination were skin reactions (34%), endocrine (23%), gastrointestinal (18%), hepatic (15%), pulmonary (8%), hypersensitivity (4%) and renal (4%) events. Overall, treatment-related deaths occurred in 1% of patients treated in both the combination and chemotherapy arms.
Additional Data from CheckMate -227 Presented at AACR (Free AACR Whitepaper) 2018
Additional data from CheckMate -227 presented at AACR (Free AACR Whitepaper) 2018 include subgroup analyses by tumor PD-L1 expression in patients with TMB ≥10 mut/Mb. In these analyses, PFS was significantly improved with the combination versus chemotherapy in patients with PD-L1 ≥1% (HR 0.62; 95% CI: 0.44 to 0.88) and PD-L1 <1% (HR 0.48; 95% CI: 0.27 to 0.85). Increased benefit with Opdivo plus low-dose Yervoy versus chemotherapy was also observed in patients with squamous histology (HR 0.63; 95% CI: 0.39 to 1.04) and non-squamous histology (HR 0.55; 95% CI: 0.38 to 0.80).

In the study, PFS also was evaluated with Opdivo versus chemotherapy among patients with TMB ≥13 mut/Mb and ≥1% PD-L1 expression as a secondary endpoint. An improvement in PFS with Opdivo monotherapy was not observed (HR 0.95; 97.5% CI: 0.61 to 1.48; p=0.7776).

About CheckMate -227
CheckMate -227 is an open-label Phase 3 trial evaluating Opdivo-based regimens versus platinum-doublet chemotherapy in patients with first-line advanced non-small cell lung cancer (NSCLC) across non-squamous and squamous tumor histologies. This program is comprised of three parts:
Part 1a: Opdivo plus low-dose Yervoy or Opdivo monotherapy versus chemotherapy in patients whose tumors express PD-L1
Part 1b: Opdivo plus low-dose Yervoy or Opdivo plus chemotherapy versus chemotherapy in patients whose tumors do not express PD-L1
Part 2: Opdivo plus chemotherapy versus chemotherapy in a broad population, regardless of PD-L1 or TMB status
There are two co-primary endpoints in Part 1 for the Opdivo plus Yervoy combination (versus chemotherapy): overall survival (OS) in patients whose tumors express PD-L1 (assessed in patients enrolled in Part 1a) and progression-free survival (PFS) in patients with high tumor mutational burden (TMB) ≥10 mut/Mb across the PD-L1 spectrum (assessed in patients enrolled across Parts 1a and 1b). The primary endpoint in Part 2 is OS.
Secondary endpoints in TMB-selected patient populations were analyzed hierarchically: PFS with Opdivo monotherapy versus chemotherapy in patients with TMB ≥13 mut/Mb and ≥1% PD-L1 expression, and OS with Opdivo plus Yervoy versus chemotherapy in patients with TMB ≥10 mut/Mb. Based on this statistical hierarchy, OS in patients with TMB ≥10 mut/Mb with Opdivo plus Yervoy versus chemotherapy was a descriptive analysis.

In Part 1 of this study, patients were randomized 1:1:1 to Opdivo 3 mg/kg every two weeks plus low-dose Yervoy 1 mg/kg every six weeks; histology-based platinum-doublet chemotherapy every three weeks for up to four cycles; and Opdivo 240 mg every two weeks (Part 1a) or Opdivo 360 mg plus histology-based platinum-doublet chemotherapy every three weeks for up to four cycles, followed by Opdivo monotherapy (Part 1b).
Of all randomized patients in Part 1 (N=1,739), 1,004 (58%) were evaluable for TMB analyses. Of all TMB-evaluable patients, 444 (44%) had TMB ≥10 mut/Mb, including 139 patients randomized to Opdivo plus Yervoy and 160 patients randomized to chemotherapy. In the trial, TMB was assessed using the validated assay, FoundationOne CDx.
About Tumor Mutational Burden (TMB)

Over time, cancer cells accumulate mutations that are not seen in normal cells of the body. Tumor mutational burden, or TMB, is a quantitative biomarker that reflects the total number of mutations carried by tumor cells. Tumor cells with high TMB have higher levels of neoantigens, which is thought to help the immune system recognize tumors and incite an increase in cancer-fighting T cells and an anti-tumor response. TMB is one type of biomarker that may help predict the likelihood a patient responds to immunotherapies.

Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research
At Bristol-Myers Squibb, patients are at the center of everything we do. Our vision for the future of cancer care is focused on researching and developing transformational Immuno-Oncology (I-O) medicines for hard-to-treat cancers that could potentially improve outcomes for these patients.

We are advancing the scientific understanding of I-O through our extensive portfolio of investigational compounds and approved agents. Our differentiated clinical development program is studying broad patient populations across more than 50 types of cancers with 24 clinical-stage molecules designed to target different immune system pathways. Our deep expertise and innovative clinical trial designs position us to advance I-O/I-O, I-O/chemotherapy, I-O/targeted therapies and I-O/radiation therapies across multiple tumors and potentially deliver the next wave of therapies with a sense of urgency. Through our leading translational capabilities, we are pioneering immune biology research and identifying a number of potentially predictive biomarkers, including PD-L1, TMB, MSI-H/dMMR and LAG-3, advancing the possibility of precision medicine for more patients with cancer.
We understand making the promise of I-O a reality for the many patients who may benefit from these therapies requires not only innovation on our part but also close collaboration with leading experts in the field. Our partnerships with academia, government, advocacy and biotech companies support our collective goal of providing new treatment options to advance the standards of clinical practice.
About Opdivo
Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.
Opdivo’s leading global development program is based on Bristol-Myers Squibb’s scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has enrolled more than 25,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.
In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 60 countries, including the United States, the European Union and Japan. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.
U.S. FDA-APPROVED INDICATIONS FOR OPDIVO
OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.
OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.
OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.
OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.
OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab) is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.
OPDIVO (10 mg/mL) is an injection for intravenous (IV) use.
IMPORTANT SAFETY INFORMATION
WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS
YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.
Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.
Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.
Immune-Mediated Pneumonitis
OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated pneumonitis occurred in 6% (25/407) of patients.
In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=12).
Immune-Mediated Colitis
OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.
Immune-Mediated Hepatitis
OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. For patients without HCC, withhold OPDIVO for Grade 2 and permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC, withhold OPDIVO and administer corticosteroids if AST/ALT is within normal limits at baseline and increases to >3 and up to 5 times the upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10 times the ULN. Permanently discontinue OPDIVO and administer corticosteroids if AST or ALT increases to >10 times the ULN or total bilirubin increases >3 times the ULN. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated hepatitis occurred in 13% (51/407) of patients.
In Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients receiving OPDIVO.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.
Immune-Mediated Neuropathies
In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.
Immune-Mediated Endocrinopathies
OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.
In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In patients receiving OPDIVO with YERVOY, hypophysitis occurred in 9% (36/407) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In patients receiving OPDIVO with YERVOY, adrenal insufficiency occurred in 5% (21/407) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In patients receiving OPDIVO with YERVOY, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving OPDIVO with YERVOY. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In patients receiving OPDIVO with YERVOY, diabetes occurred in 1.5% (6/407) of patients.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.
Immune-Mediated Nephritis and Renal Dysfunction
OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients.
Immune-Mediated Skin Adverse Reactions and Dermatitis
OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated rash occurred in 22.6% (92/407) of patients.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (e.g., Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.
Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one patient receiving OPDIVO with YERVOY (0.2%) after 1.7 months of exposure.

Other Immune-Mediated Adverse Reactions
Based on the severity of the adverse reaction, permanently discontinue or withhold OPDIVO, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Across clinical trials of OPDIVO monotherapy or in combination with YERVOY, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1.0% of patients receiving OPDIVO: myocarditis, rhabdomyolysis, myositis, uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), motor dysfunction, vasculitis, and myasthenic syndrome.

If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been observed in patients receiving OPDIVO and may require treatment with systemic steroids to reduce the risk of permanent vision loss.

Infusion Reactions
OPDIVO can cause severe infusion reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate study in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In patients receiving OPDIVO as a 60-minute infusion prior to the infusion of YERVOY, infusion-related reactions occurred in 2.5% (10/407) of patients.

Complications of Allogeneic HSCT after OPDIVO
Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic HSCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.

Embryo-Fetal Toxicity
Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.
Serious Adverse Reactions
In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 040, serious adverse reactions occurred in 49% of patients (n=154). The most frequent serious adverse reactions reported in at least 2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, and pneumonia. In Checkmate 238, Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in at least 2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. Serious adverse reactions occurred in 18% of OPDIVO-treated patients.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO (n=313) arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO (n=236) were cough and dyspnea at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥ 20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 238, the most common adverse reactions (≥20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). The most common adverse reactions (≥20%) in patients who received OPDIVO as a single agent were fatigue, rash, musculoskeletal pain, pruritus, diarrhea, nausea, asthenia, cough, dyspnea, constipation, decreased appetite, back pain, arthralgia, upper respiratory tract infection, pyrexia, headache, and abdominal pain.

In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).
Checkmate Trials and Patient Populations

Checkmate 067–advanced melanoma alone or in combination with YERVOY (ipilimumab); Checkmate 037 and 066–advanced melanoma; Checkmate 017–squamous non-small cell lung cancer (NSCLC); Checkmate 057–non-squamous NSCLC; Checkmate 025–renal cell carcinoma; Checkmate 205/039–classical Hodgkin lymphoma; Checkmate 141–squamous cell carcinoma of the head and neck; Checkmate 275–urothelial carcinoma; Checkmate 040–hepatocellular carcinoma; Checkmate 238–adjuvant treatment of melanoma.
Please see U.S. Full Prescribing Information for OPDIVO and YERVOY, including Boxed WARNING regarding immune-mediated adverse reactions for YERVOY.
About the Bristol-Myers Squibb and Ono Pharmaceutical Co., Ltd. Collaboration
In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Ltd. (Ono), Bristol-Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Bristol-Myers Squibb and Ono further expanded the companies’ strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies – as single agents and combination regimens – for patients with cancer in Japan, South Korea and Taiwan.

Merck’s KEYTRUDA® (pembrolizumab) Plus Pemetrexed (ALIMTA®) and Platinum Chemotherapy Reduced the Risk of Death by Half Compared with Chemotherapy Alone as First-Line Treatment for Advanced Nonsquamous NSCLC in Phase 3 KEYNOTE-189 Study

On April 16, 2018 Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported results from KEYNOTE-189, a pivotal Phase 3 trial evaluating KEYTRUDA, Merck’s anti-PD-1 therapy, in combination with pemetrexed (ALIMTA) and cisplatin or carboplatin for the first-line treatment of metastatic nonsquamous non-small cell lung cancer (NSCLC) (Press release, Merck & Co, APR 16, 2018, View Source [SID1234525352]). Findings showed that the KEYTRUDA-pemetrexed-platinum chemotherapy combination significantly improved overall survival (OS), reducing the risk of death by half compared with chemotherapy alone (HR=0.49 [95% CI, 0.38-0.64]; p<0.00001). In pre-specified exploratory analyses, an OS benefit was observed regardless of PD-L1 expression in the three PD-L1 categories that were evaluated, including: patients whose tumors were negative for PD-L1 (HR=0.59 [95% CI, 0.38-0.92]); patients whose tumors had PD-L1 tumor proportion scores (TPS) of 1-49 percent (HR=0.55 [95% CI, 0.34-0.90]); and patients who had a TPS of greater than or equal to 50 percent (HR=0.42 [95% CI, 0.26-0.68]). The addition of KEYTRUDA to pemetrexed plus platinum chemotherapy also achieved a significant improvement in progression-free survival (PFS), with a reduction in the risk of progression or death of nearly half for patients in the KEYTRUDA combination arm, compared with chemotherapy alone (HR=0.52 [95% CI, 0.43-0.64]; p<0.00001). A PFS improvement in the KEYTRUDA combination group was observed in patients whose tumors were negative for PD-L1 (HR=0.75 [95% CI, 0.53-1.05]); patients with a TPS of 1-49 percent (HR=0.55 [95% CI, 0.37-0.81]); and patients with a TPS greater than or equal to 50 percent (HR=0.36 [95% CI, 0.25-0.52]). These results are being presented today in a plenary session at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting 2018 (Abstract #CT075), with simultaneous publication in The New England Journal of Medicine.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"In this trial, KEYTRUDA in combination with pemetrexed and platinum chemotherapy, compared with chemotherapy alone, prolonged overall survival and progression-free survival in patients with advanced nonsquamous non-small cell lung cancer regardless of PD-L1 expression," said Dr. Leena Gandhi, director of thoracic medical oncology at NYU Langone’s Perlmutter Cancer Center and lead author of The New England Journal of Medicine paper. "There is good scientific rationale for combining KEYTRUDA with pemetrexed and platinum chemotherapy, and these clinical data now suggest this combination as a new standard of care for the first-line treatment of these nonsquamous non-small cell lung cancer patients."

"Our goal is to extend the lives of patients with lung cancer, and the unambiguous survival findings from KEYNOTE-189 showing the risk of death was reduced by half in the KEYTRUDA arm are important not only for patients but also for the medical community," said Dr. Roger M. Perlmutter, president, Merck Research Laboratories. "The results of this trial have the potential to change the treatment paradigm for patients with nonsquamous non-small cell lung cancer in the first-line setting, including patients whose tumors are either PD-L1 negative or are untested."
KEYTRUDA is the first immunotherapy to significantly extend survival of patients with nonsquamous NSCLC in combination with chemotherapy as a first-line treatment. KEYNOTE-189 is the confirmatory trial for KEYNOTE-021 (Cohort G), a Phase 2 study that made KEYTRUDA the only FDA-approved anti-PD-1 therapy in combination with chemotherapy (pemetrexed plus carboplatin) for the first-line treatment of patients with metastatic nonsquamous NSCLC, regardless of PD-L1 expression. Merck is working to submit data from KEYNOTE-189 to regulatory agencies in the United States and around the world.

Merck has an extensive clinical development program in lung cancer and is advancing multiple registration-enabling studies with KEYTRUDA in combination with other treatments and as monotherapy. The program, which is comprised of nearly 9,000 patients across 15 clinical studies, is evaluating KEYTRUDA across multiple settings and stages of the disease.
"The reality is, there remains a significant need for treatment options for patients with lung cancer. At the Bonnie J. Addario Lung Cancer Foundation (ALCF), we are devoted exclusively to eradicating lung cancer through research, early detection, education and treatment. And, the survival benefit achieved by the KEYTRUDA combination in the KEYNOTE-189 study represents a meaningful advance and may offer hope for patients newly diagnosed with one of the most common and deadly cancers," said Bonnie J. Addario, a 14-year lung cancer survivor and ALCF founder.
Additional Data and Safety Information from KEYNOTE-189 (Abstract #CT075)
KEYNOTE-189, a randomized, double-blind, placebo-controlled, Phase 3 study, evaluated KEYTRUDA in combination with pemetrexed and cisplatin or carboplatin, compared with pemetrexed and cisplatin or carboplatin alone, in 616 untreated patients with metastatic nonsquamous NSCLC, regardless of PD-L1 expression. Patients had no sensitizing EGFR or ALK genomic tumor aberrations, and had not previously received systemic therapy for advanced disease. The dual primary endpoints were OS and PFS; secondary endpoints include overall response rate (ORR) and duration of response (DOR).
With a median follow-up of 10.5 months (range, 0.2-20.4), KEYTRUDA in combination with pemetrexed and a platinum chemotherapy demonstrated superior improvements in OS, with a 51 percent reduction in the risk of death, compared with pemetrexed plus platinum chemotherapy alone (HR=0.49 [95% CI, 0.38-0.64]; p<0.00001). This finding includes the 50 percent of patients randomized to the chemotherapy alone group who discontinued all study therapy (n=170) and went on to receive subsequent anti-PD-1 or PD-L1 therapy, including 67 patients who received KEYTRUDA monotherapy as part of study crossover. Median OS was not reached in the KEYTRUDA combination group (95% CI, not estimable) and was 11.3 months in the chemotherapy alone group (95% CI, 8.7-15.1). In the study, 69.2 percent of patients were estimated to be alive at 12 months in the KEYTRUDA treatment group (95% CI, 64.1-73.8%) compared with 49.4 percent in the chemotherapy alone group (95% CI, 42.1-56.2%).
In KEYNOTE-189 there was also a significant improvement in PFS for KEYTRUDA in combination with pemetrexed and platinum chemotherapy with a 48 percent reduction in the risk of progression or death compared with pemetrexed plus platinum chemotherapy alone (HR=0.52 [95% CI, 0.43-0.64]; p<0.00001). The median PFS was 8.8 months for the KEYTRUDA combination (95% CI, 7.6-9.2) compared with 4.9 months for chemotherapy alone (95% CI, 4.7-5.5). The percentage of patients who were alive with no progression of disease at 12 months was 34.1 percent in the KEYTRUDA combination group (95% CI, 28.8-39.5%), which was nearly double the percentage of the pemetrexed plus platinum chemotherapy group (17.3 percent [95% CI, 12.0-23.5%]). In addition, improvements in OS and PFS were observed in other patient subgroups evaluated, including age, sex, EGOG performance-status score, smoking status, brain metastases at baseline and type of platinum chemotherapy prescribed (carboplatin or cisplatin).
In the study, KEYTRUDA plus pemetrexed and a platinum chemotherapy also showed an ORR that was more than double the ORR of chemotherapy alone (47.6 percent [95% CI, 42.6-52.5%] compared to 18.9 percent [95% CI, 13.8-25.0%], respectively, p<0.00001). Among patients in the KEYTRUDA arm, the median duration of response was 11.2 months (range, 1.1+ to 18.0+ months) compared with 7.8 months in the chemotherapy alone group (range, 2.1+ to 16.4+ months). The improvement in response rate occurred in all PD-L1 patient subgroups.
The safety of KEYTRUDA was consistent with what has been seen in previous trials among patients with metastatic NSCLC. Grade 3-5 adverse events from any cause occurred in 67.2 percent of patients in the KEYTRUDA plus pemetrexed and platinum chemotherapy group and 65.8 percent in the chemotherapy alone arm. Adverse events of any grade and from any cause with an incidence of 15 percent or more in the KEYTRUDA group were nausea (55.6%), anemia (46.2%), fatigue (40.7%), constipation (34.8%), diarrhea (30.9%), decreased appetite (28.1%), neutropenia (27.2%), vomiting (24.2%), cough (21.5%), dyspnea (21.2%), asthenia (20.5%), rash (20.2%), pyrexia (19.5%), edema peripheral (19.3%), thrombocytopenia (18.0%) and increased lacrimation (17.0%). The most common immune-mediated adverse events of any grade in patients receiving KEYTRUDA plus pemetrexed and platinum chemotherapy were hypothyroidism (6.7%), pneumonitis (4.4%), hyperthyroidism (4.0%), infusion reactions (2.5%), colitis (2.2%), severe skin toxicity (2.0%), nephritis (1.7%) and hepatitis (1.2%). There were three treatment-related deaths from pneumonitis in the KEYTRUDA plus pemetrexed and platinum chemotherapy group.
About KEYNOTE-189
KEYNOTE-189 (ClinicalTrials.gov, NCT02578680) enrolled 616 patients who were randomized 2:1 to one of two treatment groups, and were treated until disease progression, unacceptable toxicity, physician decision or consent withdrawal, as follows:
KEYTRUDA (200 mg fixed dose every three weeks) plus pemetrexed (500 mg/m2) (with vitamin supplementation) plus cisplatin (75 mg/m2) or carboplatin AUC 5 mg/mL/min on day 1 every three weeks (Q3W) for four cycles, followed by KEYTRUDA 200 mg plus pemetrexed (500 mg/m2) Q3W; or
Saline placebo plus pemetrexed (500 mg/m2) (with vitamin supplementation) plus cisplatin (75 mg/m2) or carboplatin AUC 5 mg/mL/min on day 1 every three weeks (Q3W) for four cycles, followed by placebo plus pemetrexed (500 mg/m2) Q3W.
Patients on the control arm who experienced disease progression, verified by central independent review, were permitted to undergo treatment assignment unblinding and crossover to receive open-label KEYTRUDA. The KEYNOTE-189 study was conducted in collaboration with Eli Lilly and Company, the makers of pemetrexed (ALIMTA).
About Lung Cancer
Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon, breast and prostate cancers combined. The two main types of lung cancer are non-small cell and small cell. NSCLC is the most common type of lung cancer, accounting for about 85 percent of all cases. The five-year survival rate for patients diagnosed in the United States with any stage of lung cancer is estimated to be 18 percent.
Merck Investor Webcast
Merck will hold a live investor audio webcast in conjunction with the AACR (Free AACR Whitepaper) 2018 Annual Meeting on Monday, April 16 at 6:45 p.m. CDT (7:45 p.m. EDT). Those interested in participating can register and join here.
About KEYTRUDA (pembrolizumab) Injection 100mg
KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industry’s largest immuno-oncology clinical research program, which currently involves more than 700 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
KEYTRUDA (pembrolizumab) Indications and Dosing
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma at a fixed dose of 200 mg every three weeks until disease progression or unacceptable toxicity.
Lung Cancer
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have high PD-L1 expression [tumor proportion score (TPS) ≥50%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, as a single agent, is also indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
KEYTRUDA, in combination with pemetrexed and carboplatin, is indicated for the first-line treatment of patients with metastatic nonsquamous NSCLC. This indication is approved under accelerated approval based on tumor response rate and progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
In metastatic NSCLC, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.
When administering KEYTRUDA in combination with chemotherapy, KEYTRUDA should be administered prior to chemotherapy when given on the same day. See also the Prescribing Information for pemetrexed and carboplatin.
Head and Neck Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. In HNSCC, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after three or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. In adults with cHL, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression. In pediatric patients with cHL, KEYTRUDA is administered at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who are not eligible for cisplatin-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
KEYTRUDA is also indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
In locally advanced or metastatic urothelial carcinoma, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.
Microsatellite Instability-High (MSI-H) Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
In adult patients with MSI-H cancer, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression. In children with MSI-H cancer, KEYTRUDA is administered at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.
Gastric Cancer
KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 [Combined Positive Score (CPS) ≥1] as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA is 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.
Selected Important Safety Information for KEYTRUDA
KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 94 (3.4%) of 2799 patients receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%) pneumonitis, and occurred more frequently in patients with a history of prior thoracic radiation (6.9%) compared to those without (2.9%). Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 48 (1.7%) of 2799 patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%) colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.
KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 19 (0.7%) of 2799 patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%) hepatitis. Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.
KEYTRUDA can cause hypophysitis. Hypophysitis occurred in 17 (0.6%) of 2799 patients receiving KEYTRUDA, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%) hypophysitis. Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency). Administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2; withhold or discontinue for Grade 3 or 4 hypophysitis.
KEYTRUDA can cause thyroid disorders, including hyperthyroidism, hypothyroidism, and thyroiditis. Hyperthyroidism occurred in 96 (3.4%) of 2799 patients receiving KEYTRUDA, including Grade 2 (0.8%) and 3 (0.1%) hyperthyroidism. Hypothyroidism occurred in 237 (8.5%) of 2799 patients receiving KEYTRUDA, including Grade 2 (6.2%) and 3 (0.1%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in patients with HNSCC, occurring in 28 (15%) of 192 patients with HNSCC, including Grade 3 (0.5%) hypothyroidism. Thyroiditis occurred in 16 (0.6%) of 2799 patients receiving KEYTRUDA, including Grade 2 (0.3%) thyroiditis. Monitor patients for changes in thyroid function (at the start of treatment, periodically during treatment, and as indicated based on clinical evaluation) and for clinical signs and symptoms of thyroid disorders. Administer replacement hormones for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism.
KEYTRUDA can cause type 1 diabetes mellitus, including diabetic ketoacidosis, which have been reported in 6 (0.2%) of 2799 patients. Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.
KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 9 (0.3%) of 2799 patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 nephritis.
Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.
KEYTRUDA can cause other clinically important immune-mediated adverse reactions. These immune-mediated reactions may occur in any organ system. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.
The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, and partial seizures arising in a patient with inflammatory foci in brain parenchyma. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.
Solid organ transplant rejection has been reported in postmarketing use of KEYTRUDA. Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment with KEYTRUDA vs the risk of possible organ rejection in these patients.
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 6 (0.2%) of 2799 patients. Monitor patients for signs and symptoms of infusion-related reactions, including rigors, chills, wheezing, pruritus, flushing, rash, hypotension, hypoxemia, and fever. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic hematopoietic stem cell transplantation (HSCT) after being treated with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after treatment with KEYTRUDA on any trial, 6 patients (26%) developed graft-versus-host disease (GVHD), one of which was fatal, and 2 patients (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning, one of which was fatal. Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation.
These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT. Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.
In clinical trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled clinical trials.
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. If used during pregnancy, or if the patient becomes pregnant during treatment, apprise the patient of the potential hazard to a fetus. Advise females of reproductive potential to use highly effective contraception during treatment and for 4 months after the last dose of KEYTRUDA.
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). Adverse reactions leading to interruption of KEYTRUDA occurred in 21% of patients; the most common (≥1%) was diarrhea (2.5%). The most common adverse reactions with KEYTRUDA vs ipilimumab were fatigue (28% vs 28%), diarrhea (26% with KEYTRUDA), rash (24% vs 23%), and nausea (21% with KEYTRUDA). Corresponding incidence rates are listed for ipilimumab only for those adverse reactions that occurred at the same or lower rate than with KEYTRUDA.
In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC. The most common adverse event resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.8%). Adverse reactions leading to interruption of KEYTRUDA occurred in 23% of patients; the most common (≥1%) were diarrhea (1%), fatigue (1.3%), pneumonia (1%), liver enzyme elevation (1.2%), decreased appetite (1.3%), and pneumonitis (1%). The most common adverse reactions (occurring in at least 20% of patients and at a higher incidence than with docetaxel) were decreased appetite (25% vs 23%), dyspnea (23% vs 20%), and nausea (20% vs 18%).

In KEYNOTE-021(G1), when KEYTRUDA was administered in combination with carboplatin and pemetrexed (carbo/pem) in advanced nonsquamous NSCLC, KEYTRUDA was discontinued in 10% of 59 patients. The most common adverse reaction resulting in discontinuation of KEYTRUDA (≥2%) was acute kidney injury (3.4%). Adverse reactions leading to interruption of KEYTRUDA occurred in 39% of patients; the most common (≥2%) were fatigue (8%), neutrophil count decreased (8%), anemia (5%), dyspnea (3.4%), and pneumonitis (3.4%). The most common adverse reactions (≥20%) with KEYTRUDA compared to carbo/pem alone were fatigue (71% vs 50%), nausea (68% vs 56%), constipation (51% vs 37%), rash (42% vs 21%), vomiting (39% vs 27%), dyspnea (39% vs 21%), diarrhea (37% vs 23%), decreased appetite (31% vs 23%), headache (31% vs 16%), cough (24% vs 18%), dizziness (24% vs 16%), insomnia (24% vs 15%), pruritus (24% vs 4.8%), peripheral edema (22% vs 18%), dysgeusia (20% vs 11%), alopecia (20% vs 3.2%), upper respiratory tract infection (20% vs 3.2%), and arthralgia (15% vs 24%). This study was not designed to demonstrate a statistically significant difference in adverse reaction rates for KEYTRUDA as compared to carbo/pem alone for any specified adverse reaction.

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (reported in at least 20% of patients) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC, with the exception of increased incidences of facial edema (10% all Grades; 2.1% Grades 3 or 4) and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL, and treatment was interrupted due to adverse reactions in 26% of patients. Fifteen percent (15%) of patients had an adverse reaction requiring systemic corticosteroid therapy. Serious adverse reactions occurred in 16% of patients. The most frequent serious adverse reactions (≥1%) included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; one from GVHD after subsequent allogeneic HSCT and one from septic shock. The most common adverse reactions (occurring in ≥20% of patients) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).
In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reactions (in ≥20% of patients) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%). Eighteen patients (5%) died from causes other than disease progression. Five patients (1.4%) who were treated with KEYTRUDA experienced sepsis which led to death, and 3 patients (0.8%) experienced pneumonia which led to death. Adverse reactions leading to interruption of KEYTRUDA occurred in 22% of patients; the most common (≥1%) were liver enzyme increase, diarrhea, urinary tract infection, acute kidney injury, fatigue, joint pain, and pneumonia. Serious adverse reactions occurred in 42% of patients, the most frequent (≥2%) of which were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis.

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Adverse reactions leading to interruption of KEYTRUDA occurred in 20% of patients; the most common (≥1%) were urinary tract infection (1.5%), diarrhea (1.5%), and colitis (1.1%). The most common adverse reactions (≥20%) in patients who received KEYTRUDA vs those who received chemotherapy were fatigue (38% vs 56%), musculoskeletal pain (32% vs 27%), pruritus (23% vs 6%), decreased appetite (21% vs 21%), nausea (21% vs 29%), and rash (20% vs 13%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients, the most frequent (≥2%) of which were urinary tract infection, pneumonia, anemia, and pneumonitis.

It is not known whether KEYTRUDA is excreted in human milk. Because many drugs are excreted in human milk, instruct women to discontinue nursing during treatment with KEYTRUDA and for 4 months after the final dose.
There is limited experience in pediatric patients. In a study, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with advanced melanoma, lymphoma, or PD-L1–positive advanced, relapsed, or refractory solid tumors were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving KEYTRUDA for 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults treated with KEYTRUDA. Toxicities that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), hypertransaminasemia (28%), and hyponatremia (18%).

Merck’s Focus on Cancer
Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, helping people fight cancer is our passion and supporting accessibility to our cancer medicines is our commitment. Our focus is on pursuing research in immuno-oncology and we are accelerating every step in the journey – from lab to clinic – to potentially bring new hope to people with cancer.
As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the fastest-growing development programs in the industry. We are currently executing an expansive research program evaluating our anti-PD-1 therapy across more than 30 tumor types. We also continue to strengthen our immuno-oncology portfolio through strategic acquisitions and are prioritizing the development of several promising immunotherapeutic candidates with the potential to improve the treatment of advanced cancers.
For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

Cancer Genetics’ Unique Tissue of Origin Test (TOO®) Receives Special FDA 510(k) Clearance

On April 16, 2018 Cancer Genetics, Inc. (Nasdaq:CGIX), a leader in enabling precision medicine for oncology through molecular markers and diagnostics, reported that it has received special 510(k) clearance from the U. S. Food and Drug Administration (FDA) for its Tissue of Origin test (TOO) following modifications made to test reagents and software (Press release, Cancer Genetics, APR 16, 2018, View Source [SID1234525337]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

TOO is a microarray-based gene expression test that analyzes a tumor’s genomic information to help identify its origin, which is valuable in classifying metastatic, poorly differentiated, or undifferentiated cancers. TOO assesses 2,000 individual genes, covering 15 of the most common tumor types (representing 58 morphologies) and 90% of all solid tumors [1]. These tumors include thyroid, breast, non-small cell lung, pancreas, gastric, colorectal, liver, bladder, kidney, non-Hodgkin’s lymphoma, melanoma, ovarian, sarcoma, testicular germ cell, and prostate.
TOO is the only FDA-cleared test of its type and is Medicare-reimbursed. It is also the only test that provides a pathologist’s review and interpretation of a patient’s test results and diagnosis. TOO provides extensive analytical and clinical validation for statistically significant improvement in accuracy over other methods, including IHC [2]. TOO results lead to a change in patient treatment 65% of the time. In challenging cancers that require a second round of IHC, TOO increases diagnostic accuracy and confidence in site-specific treatment decisions [1].
"Our TOO Test represents a unique offering with the ability to add significant value to the continuum of care for cancer patients and greatly enhance our biopharma partners’ development efforts. This 510(k) clearance represents an important milestone toward our goal of gaining broad adoption of the test," said John A. (Jay) Roberts, Interim Chief Executive Officer and COO of Cancer Genetics. "An important element of our recently implemented transformation strategy is the identification of new methods through which to monetize our world-class test portfolio. We are currently evaluating several partnering opportunities that would expand the reach of the TOO Test and have the potential to generate high-margin revenue streams. We look forward to continuing this process as we leverage the capabilities of TOO to drive future growth."

Compared to the early version, the current TOO assay uses new labeling reagents and has a higher accuracy rate and a shorter workflow with similar precision and reproducibility. The low RNA input requirement of the early version is maintained. The combined result of these new features offers a further optimized clinical assay to help clinicians make diagnostic decisions and subsequent treatment selections.

Rita Shaknovich, Chief Medical Officer of CGI added, "Despite increasing excellence in the diagnostic workup for malignancies, there are approximately 150,000 newly diagnosed cases of metastatic cancer with unclear diagnosis in the U.S. and Europe each year [3]. This includes the subset of patients with cancers of unknown primary (CUP) and of uncertain origin. Increasingly complex algorithms and testing associated with a diagnostic workup also means that many challenging cases have insufficient amount of sample material for analysis. CGI’s TOO aids in identifying the source of such challenging tumors while using less material, and could be used as a diagnostic or confirmatory tool both for routine clinical testing and for clinical trial enrollment of patients with such tumors, enabling them to be considered for novel drug therapies."
The Company announced on April 2, 2018 that it has engaged Raymond James & Associates, Inc. as a financial advisor to assist with evaluating options for the Company’s strategic direction. These options may include raising additional capital, the acquisition of another company and / or complementary assets, the sale of the Company, or another type of strategic partnership. The Company’s Board of Directors is committed to evaluating all potential strategic opportunities and to pursuing the path most likely to create both near- and longer-term value for Cancer Genetics’ shareholders.
1. R Pillai, et al. Validation and Reproducibility of a Microarray-based Gene Expression Test for Identifying the Primary Site of Tumors in Formalin-Fixed Paraffin-Embedded Specimens. J Molec Diag 13 2011;13:48-56.
2. JP Grenert, et al. Gene Expression Profiling from Formalin-Fixed, Paraffin-Embedded Tissue for Tumor Diagnosis. Clin Chim Acta. 2011 Jul 15;412(15-16):1462-4.
3. Tomuleasa, Ciprian, et al. How to Diagnose and Treat a Cancer of Unknown Primary Site. Journal of Gastrointestinal & Liver Diseases 26.1 (2017).

Navidea Biopharmaceuticals to Present at 2nd Annual NASH Summit

On April 16, 2018 Navidea Biopharmaceuticals (NYSE MKT: NAVB) ("Navidea" or "the Company"), a company focused on the development of precision immunodiagnostic agents and immunotherapeutics, reported it will present at the 2nd Annual NASH Summit in Boston, MA being held April 23-25, 2018 (Press release, Navidea Biopharmaceuticals, APR 16, 2018, View Source [SID1234525353]). Michael Goldberg, President and Chief Executive Officer, will be giving a new presentation focused on Navidea’s NASH research; the presentation will be available on Navidea’s website following the conference.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Event: 2nd Annual NASH Conference
Presentation Date: Wednesday, April 25th
Presentation Time: 11:30am EST
Location: Revere Hotel Boston Common, Boston, MA
To schedule a meeting with Navidea management at the conference, please contact Navidea Investor Relations at [email protected].

Crescendo Biologics Reaches First Major Milestone in Strategic Collaboration with Takeda

On 16 April 2018 Crescendo Biologics Ltd (Crescendo), the developer of multifunctional biologics, including targeted T-cell engagers, reported that it has achieved the first major technical milestone under the terms of its collaboration with Takeda Pharmaceutical Company Limited (Takeda; TSE: 4502) (Press release, Crescendo Biologics, APR 16, 2018, View Source [SID1234525320]).
The global, strategic, multi-target collaboration and license agreement with Takeda was announced in October 2016. Under this agreement, Crescendo’s proprietary transgenic platform and engineering expertise is being used to identify and optimally configure Humabody-based therapeutics against targets selected by Takeda.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

This milestone, for an undisclosed amount, marks the successful delivery of a highly diverse panel of Humabody leads, directed to the first of Takeda’s selected targets.
Dr Peter Pack, CEO of Crescendo, commented:
"This milestone is an important step forward in our relationship with Takeda. It demonstrates our ability to deliver a diverse selection of characterised Humabody molecules that meet the stringent specifications outlined in the agreement. In conjunction with Takeda’s deep expertise in the field of oncology, this exciting milestone provides further validation of Crescendo’s ability to create optimally configured Humabodies.
"This milestone demonstrates the potential of this innovative technology and brings us closer to our goal of developing next generation, highly modular and targeted biologics against cancer."