Bayer to Highlight Expanded Research from Growing Oncology Portfolio at ESMO Congress 2021

On September 9, 2021 Bayer reported that it will present new investigational data from its established portfolio of approved oncology therapies at the upcoming ESMO (Free ESMO Whitepaper) Congress 2021 from September 16-21, 2021 (Press release, Bayer, SEP 9, 2021, View Source [SID1234587539]). Presentations will center around Bayer’s ongoing focus in addressing patient needs through expanded research with existing therapies in certain cancers, as well as studies in new tumor types and in combination with other therapies.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Among the featured research presented will be three subset analyses and one Health Care Economic (HCE) model for Vitrakvi (larotrectinib), including updated long-term efficacy and safety findings from an integrated dataset of adult TRK fusion cancer patients. Additional data for Vitrakvi include an analysis in adult and pediatric patients according to prior therapy and performance status, as well as an overview on the incidence of fractures in Vitrakvi-treated patients. An analysis evaluating Vitrakvi compared to entrectinib using a matching-adjusted indirect comparison (MAIC) will also be presented. MAIC is an alternative method for comparative data when a randomized control trial (RCT) is not available and/or possible, like for TRK fusion cancer, which is an ultra-rare disease.1 Vitrakvi is approved for the treatment of adult and pediatric patients with solid tumors that have a NTRK gene fusion without a known acquired resistance mutation, are metastatic or where surgical resection is likely to result in severe morbidity, and have no satisfactory alternative treatments or that have progressed following treatment. Patients should be selected for therapy based on an FDA-approved test. This indication is approved under accelerated approval based on overall response rate (ORR) and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

New ARAMIS trial data for NUBEQA (darolutamide) in patients with non-metastatic castration-resistant prostate cancer (nmCRPC) on the timing of adverse events (AEs) of interest and serious AEs (time course profile of AEs) will be showcased, continuing to reinforce the established clinical profile of the therapy in this indication.2

Additionally, an analysis from the investigator-initiated ODENZA trial on the cognitive assessment in men with metastatic castration-resistant prostate cancer (mCRPC) randomly receiving NUBEQA or enzalutamide will be presented. NUBEQA is an androgen receptor inhibitor (ARi) with a distinct chemical structure that competitively inhibits androgen binding, AR nuclear translocation and AR-mediated transcription. NUBEQA is indicated in the U.S. for the treatment of men with nmCRPC.

Additional data for prostate cancer treatment Xofigo (radium Ra 223 dichloride) will be presented. Research includes pain efficacy data in patients with mCRPC from the REASSURE and PARABO observational studies. Xofigo is indicated for the treatment of patients with mCRPC, symptomatic bone metastases and no known visceral metastatic disease.

Data for Aliqopa (copanlisib) include results from a subset of the Phase III trial CHRONOS-3 analyzing Aliqopa plus rituximab compared to rituximab and placebo in patients with marginal zone lymphoma (MZL). In 2017, Aliqopa was approved for the treatment of adult patients with relapsed follicular lymphoma (FL) who have received at least two prior systemic therapies based on the results of a single arm, multi-center, Phase II clinical trial (CHRONOS-1).3 Accelerated approval was granted for this indication based on ORR. Continued approval for this indication is contingent upon verification and description of clinical benefit in a confirmatory trial. Recently, Bayer submitted a supplemental new drug application (sNDA) to the FDA in relapsed indolent B-cell non-Hodgkin’s Lymphoma (iNHL) and a marketing authorization application (MAA) to the European Medicines Agency (EMA) in relapsed MZL for the investigational combination of Aliqopa and rituximab. Bayer is in discussions with health authorities worldwide regarding data from CHRONOS-3.

Investigator-initiated research (IIR) highlighting Stivarga (regorafenib) will wrap up Bayer’s presence at the meeting. These investigational data, including a late-breaking abstract on the Phase II REGOBONE study assessing the efficacy and safety of Stivarga in patients with relapsed advanced or metastatic chordoma, and an oral presentation on a collaborative Phase II trial with Stivarga in first-line of KIT/PDGFR wild type advanced gastrointestinal stromal tumors (GIST), continue investigating Stivarga’s potential in difficult-to-treat tumors.

Notable presentations from Bayer projects for the ESMO (Free ESMO Whitepaper) Congress 2021 are listed below:

Larotrectinib

Abstract title: Larotrectinib efficacy and safety in adult patients with tropomyosin receptor kinase (TRK) fusion cancer
E-Poster: 535P; September 16
Abstract title: Incidence of fractures in TRK fusion cancer patients treated with larotrectinib
E-Poster: 536P; September 16
Abstract title: Larotrectinib in non-CNS TRK fusion cancer patients: outcomes by prior therapy and performance status
E-Poster: 534P; September 16
Abstract title: Matching-Adjusted Indirect Comparison for Treatment of NTRK fusion cancer with Larotrectinib versus Entrectinib
E-Poster: 104P; September 16
Abstract title: Patterns of care and outcomes of NTRK-fusion positive sarcomas: A retrospective and prospective cases series – Investigator-Initiated Research (IIR)
E-Poster: 1534P; September 16
Abstract title: Prevalence of NTRK1/2/3 fusions in dMMR/MSI metastatic colorectal cancer – Investigator-Initiated Research (IIR)
E-Poster: 444P; September 16
Darolutamide

Abstract title: Time Course Profile of Adverse Events of Interest and Serious Adverse Events with Darolutamide in the ARAMIS Trial
E-Poster: 630P; September 16
Abstract title: Darolutamide maintenance in metastatic castration resistant prostate cancer (mCRPC) previously treated with novel hormonal agents (NHA) and non-progressive disease after subsequent treatment with a taxane: A randomized double-blind placebo-controlled phase II trial (SAKK 08/16) – Investigator-Initiated Research (IIR)
Late-Breaking Presentation: LBA26; September 19
Abstract title: Real-World Treatment Patterns in Metastatic Hormone-Sensitive Prostate Cancer (mHSPC) Patients in the US, Germany, France, China, and Japan
E-Poster: 623P; September 16
Abstract title: Objective computerized cognitive assessment in men with metastatic castrate-resistant prostate cancer (mCRPC) randomly receiving darolutamide or enzalutamide in the ODENZA trial – Investigator-Initiated Research (IIR)
E-Poster: 603P; September 16
Radium-223 dichloride (Ra-223)

Abstract title: Pain efficacy with radium-223 (Ra-223) in the REASSURE global, prospective, observational study of men with metastatic castration-resistant prostate cancer (mCRPC)
E-Poster: 593P; September 16
Abstract title: Pain efficacy with radium-223 (Ra-223) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) in the PARABO observational study
E-Poster: 594P; September 16
Abstract title: A multicenter phase 1 study of radium-223 (Ra-223) plus pembrolizumab in patients with stage IV non-small cell lung cancer (NSCLC)
E-Poster: 1309P; September 16
Abstract title: Role of Serum Biomarkers of Bone Metabolism in metastatic Castration-Resistance Prostate Cancer (mCRPC) patients (pts) treated with Radium-223 (Ra223): PRORADIUM STUDY FINAL RESULTS – Investigator-Initiated Research (IIR)
E-Poster: 606P; September 16
Abstract title: PRORADIUM: prospective analysis of the impact of germline mutations in Homologous Recombination (HR) genes on the response to Radium-223 for metastatic castration resistant prostate cancer (mCRPC)​ – Investigator-Initiated Research (IIR)
E-Poster: 590P; September 16
Copanlisib

Abstract title: Copanlisib plus rituximab vs placebo plus rituximab in patients (pts) with relapsed marginal zone lymphoma (MZL) treated in the Phase III CHRONOS-3 trial
Oral Presentation: 826O; September 20
Abstract title: Phase II study of PI3K inhibitor copanlisib in cancer patients with deleterious PTEN mutations and retained PTEN protein expression: Results from the NCI-MATCH Trial (EAY131) Sub-protocol Z1H
E-Poster: 530P; September 16
Regorafenib

Abstract title: Results of the randomized, Placebo (PL)-controlled Phase II study evaluating the efficacy and safety of Regorafenib (REGO) in patients (pts) with relapsed advanced or metastatic chordoma, on behalf of the French Sarcoma Group (FSG) and Unicancer – Investigator-Initiated Research (IIR)
Late-Breaking Presentation: LBA58; September 21
Abstract title: REGISTRI: Regorafenib in first-line of KIT/PDGFR Wild Type Advanced GIST: an Spanish (GEIS), Italian (ISG) and French Sarcoma Group (FSG) Phase II trial – Investigator-Initiated Research (IIR)
Oral Presentation: 1520O; September 21
Abstract title: (BREGO) Regorafenib combined with modified m-GEMOX in patients with advanced biliary tract cancer (BTC): a phase II randomized trial – Investigator-Initiated Research (IIR)
E-Poster: 48P; September 16
Abstract title: PRODIGE 68 – UCGI 38 – SOREGATT: A randomized, phase 2 study comparing the sequences of regorafenib (reg) and trifluridine/tipiracil (t/t) after failure of standard therapies in patients (pts) with metastatic colorectal cancer (mCRC) – Investigator-Initiated Research (IIR), Trial in Progress (TiP)
E-Poster: 508TiP; September 16
Abstract title: REGINA: a phase II trial of neoadjuvant regorafenib (Rego) in combination with nivolumab (Nivo) and short-course radiotherapy (SCRT) in intermediate-risk, stage II-III rectal cancer (RC) – Investigator-Initiated Research (IIR), Trial in Progress (TiP)
E-Poster: 505TiP; September 16
Abstract title: REPROGRAM-01, a phase II study of regorafenib in combination with a multimodal metronomic chemotherapy in patients with metastatic colorectal cancer – Investigator-Initiated Research (IIR), Trial in Progress (TiP)
E-Poster: 509TiP; September 16
Abstract title: INTEGRATE IIb: A Randomised Phase III Open Label Study of regorafenib + nivolumab vs standard chemotherapy in Refractory Advanced Gastro-Oesophageal Cancer (AGOC) – Investigator-Initiated Research (IIR), Trial in Progress (TiP)
E-Poster: 1438TiP; September 16
About Vitrakvi (larotrectinib)4

Vitrakvi (larotrectinib) is indicated for the treatment of adult and pediatric patients with solid tumors that have a neurotrophic receptor tyrosine kinase (NTRK) gene fusion without a known acquired resistance mutation, are metastatic or where surgical resection will likely result in severe morbidity, and have no satisfactory alternative treatments or that have progressed following treatment.

Select patients for therapy based on an FDA-approved test.

This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Important Safety Information for VITRAKVI (larotrectinib)

Central Nervous System Effects: Central nervous system (CNS) adverse reactions occurred in patients receiving VITRAKVI, including dizziness, cognitive impairment, mood disorders, and sleep disturbances.

In patients who received VITRAKVI, all grades CNS effects including cognitive impairment, mood disorders, dizziness and sleep disorders were observed in 42% with Grades 3-4 in 3.9% of patients.

Cognitive impairment occurred in 11% of patients. The median time to onset of cognitive impairment was 5.6 months (range: 2 days to 41 months). Cognitive impairment occurring in ≥ 1% of patients included memory impairment (3.6%), confusional state (2.9%), disturbance in attention (2.9%), delirium (2.2%), cognitive disorders (1.4%), and Grade 3 cognitive adverse reactions occurred in 2.5% of patients. Among the 30 patients with cognitive impairment, 7% required a dose modification and 20% required dose interruption.

Mood disorders occurred in 14% of patients. The median time to onset of mood disorders was 3.9 months (range: 1 day to 40.5 months). Mood disorders occurring in ≥1% of patients included anxiety (5%), depression (3.9%), agitation (2.9%), and irritability (2.9%). Grade 3 mood disorders occurred in 0.4% of patients.

Dizziness occurred in 27% of patients, and Grade 3 dizziness occurred in 1.1% of patients. Among the 74 patients who experienced dizziness, 5% of patients required a dose modification and 5% required dose interruption.

Sleep disturbances occurred in 10% of patients. Sleep disturbances included insomnia (7%), somnolence (2.5%), and sleep disorder (0.4%). There were no Grade 3-4 sleep disturbances. Among the 28 patients who experienced sleep disturbances, 1 patient each (3.6%) required a dose modification or dose interruption.

Advise patients and caretakers of these risks with VITRAKVI. Advise patients not to drive or operate hazardous machinery if they are experiencing neurologic adverse reactions. Withhold or permanently discontinue VITRAKVI based on the severity. If withheld, modify the VITRAKVI dosage when resumed.

Skeletal Fractures: Among 187 adult patients who received VITRAKVI across clinical trials, fractures were reported in 7% and among 92 pediatric patients, fractures were reported in 9% (N=279; 8%). Median time to fracture was 11.6 months (range 0.9 to 45.8 months) in patients followed per fracture. Fractures of the femur, hip or acetabulum were reported in 4 patients (3 adult, 1 pediatric). Most fractures were associated with minimal or moderate trauma. Some fractures were associated with radiologic abnormalities suggestive of local tumor involvement. VITRAKVI treatment was interrupted due to fracture in 1.4% patients.

Promptly evaluate patients with signs or symptoms of potential fracture (e.g., pain, changes in mobility, deformity). There are no data on the effects of VITRAKVI on healing of known fractures or risk of future fractures.

Hepatotoxicity: In patients who received VITRAKVI, increased AST of any grade occurred in 52% of patients and increased ALT of any grade occurred in 45%. Grade 3-4 increased AST or ALT occurred in 3.1% and 2.5% of patients, respectively. The median time to onset of increased AST was 2.1 months (range: 1 day to 4.3 years). The median time to onset of increased ALT was 2.3 months (range: 1 day to 4.2 years). Increased AST and ALT leading to dose modifications occurred in 1.4% and 2.2% of patients, respectively. Increased AST or ALT led to permanent discontinuation in 3 (1.1%) of patients.

Monitor liver tests, including ALT and AST, every 2 weeks during the first month of treatment, then monthly thereafter, and as clinically indicated. Withhold or permanently discontinue VITRAKVI based on the severity. If withheld, modify the VITRAKVI dosage when resumed.

Embryo-Fetal Toxicity: VITRAKVI can cause fetal harm when administered to a pregnant woman. Larotrectinib resulted in malformations in rats and rabbits at maternal exposures that were approximately 11- and 0.7-times, respectively, those observed at the clinical dose of 100 mg twice daily. Advise women of the potential risk to a fetus. Advise females of reproductive potential to use an effective method of contraception during treatment and for 1 week after the final dose of VITRAKVI.

Most Common Adverse Reactions (≥20%): The most common adverse reactions (≥20%), including laboratory abnormalities, were: increased AST (52%), increased ALT (45%), anemia (42%), musculoskeletal pain (42%), fatigue (36%), hypoalbuminemia (36%), neutropenia (36%), increased alkaline phosphatase (34%), cough (32%), leukopenia (28%), constipation (27%), diarrhea (27%), dizziness (27%), hypocalcemia (25%), nausea (25%), vomiting (25%), pyrexia (24%), lymphopenia (22%) and abdominal pain (21%).

Drug Interactions: Avoid coadministration of VITRAKVI with strong CYP3A4 inhibitors (including grapefruit or grapefruit juice), strong CYP3A4 inducers (including St. John’s wort), or sensitive CYP3A4 substrates. If coadministration of strong CYP3A4 inhibitors or inducers cannot be avoided, modify the VITRAKVI dose as recommended. If coadministration of sensitive CYP3A4 substrates cannot be avoided, monitor patients for increased adverse reactions of these drugs.

Lactation: Advise women not to breastfeed during treatment with VITRAKVI and for 1 week after the final dose.

Please see the full Prescribing Information for VITRAKVI (larotrectinib).

About NUBEQA (darolutamide)2

NUBEQA is an androgen receptor inhibitor (ARi) with a distinct chemical structure that competitively inhibits androgen binding, AR nuclear translocation, and AR-mediated transcription.2 A Phase III study in metastatic hormone-sensitive prostate cancer (ARASENS) is ongoing. Information about this trial can be found at www.clinicaltrials.gov.

INDICATION FOR NUBEQA (darolutamide)

NUBEQA (darolutamide) is an androgen receptor inhibitor indicated for the treatment of patients with non-metastatic castration-resistant prostate cancer.

IMPORTANT SAFETY INFORMATION FOR NUBEQA (darolutamide)

Embryo-Fetal Toxicity: Safety and efficacy of NUBEQA have not been established in females. NUBEQA can cause fetal harm and loss of pregnancy. Advise males with female partners of reproductive potential to use effective contraception during treatment with NUBEQA and for 1 week after the last dose.

Adverse Reactions

Serious adverse reactions occurred in 25% of patients receiving NUBEQA and in 20% of patients receiving placebo. Serious adverse reactions in ≥1 % of patients who received NUBEQA were urinary retention, pneumonia, and hematuria. Overall, 3.9% of patients receiving NUBEQA and 3.2% of patients receiving placebo died from adverse reactions, which included death (0.4%), cardiac failure (0.3%), cardiac arrest (0.2%), general physical health deterioration (0.2%), and pulmonary embolism (0.2%) for NUBEQA.

Adverse reactions occurring more frequently in the NUBEQA arm (≥2% over placebo) were fatigue (16% vs 11%), pain in extremity (6% vs 3%) and rash (3% vs 1%).

Clinically significant adverse reactions occurring in ≥2% of patients treated with NUBEQA included ischemic heart disease (4.0% vs 3.4% on placebo) and heart failure (2.1% vs 0.9% on placebo).

Drug Interactions

Effect of Other Drugs on NUBEQA – Combined P-gp and strong or moderate CYP3A4 inducers decrease NUBEQA exposure, which may decrease NUBEQA activity. Avoid concomitant use.

Combined P-gp and strong CYP3A4 inhibitors increase NUBEQA exposure, which may increase the risk of NUBEQA adverse reactions. Monitor more frequently and modify NUBEQA dose as needed.

Effects of NUBEQA on Other Drugs – NUBEQA inhibits breast cancer resistance protein (BCRP) transporter. Concomitant use increases exposure (AUC) and maximal concentration of BCRP substrates, which may increase the risk of BCRP substrate-related toxicities. Avoid concomitant use where possible. If used together, monitor more frequently for adverse reactions, and consider dose reduction of the BCRP substrate.

NUBEQA inhibits OATP1B1 and OATP1B3 transporters. Concomitant use may increase plasma concentrations of OATP1B1 or OATP1B3 substrates. Monitor more frequently for adverse reactions and consider dose reduction of these substrates.

Review the prescribing information of drugs that are BCRP, OATP1B1, and OATP1B3 substrates when used concomitantly with NUBEQA.

For important risk and use information about NUBEQA, please see the accompanying full Prescribing Information.

About Xofigo (radium Ra 223 dichloride) Injection5

Xofigo is indicated for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases and no known visceral metastatic disease.

Important Safety Information for Xofigo (radium Ra 223 dichloride) Injection

Warnings and Precautions:

Bone Marrow Suppression: In the phase 3 ALSYMPCA trial, 2% of patients in the Xofigo arm experienced bone marrow failure or ongoing pancytopenia, compared to no patients treated with placebo. There were two deaths due to bone marrow failure. For 7 of 13 patients treated with Xofigo bone marrow failure was ongoing at the time of death. Among the 13 patients who experienced bone marrow failure, 54% required blood transfusions. Four percent (4%) of patients in the Xofigo arm and 2% in the placebo arm permanently discontinued therapy due to bone marrow suppression. In the randomized trial, deaths related to vascular hemorrhage in association with myelosuppression were observed in 1% of Xofigo-treated patients compared to 0.3% of patients treated with placebo. The incidence of infection-related deaths (2%), serious infections (10%), and febrile neutropenia (<1%) was similar for patients treated with Xofigo and placebo. Myelosuppression–notably thrombocytopenia, neutropenia, pancytopenia, and leukopenia–has been reported in patients treated with Xofigo.

Monitor patients with evidence of compromised bone marrow reserve closely and provide supportive care measures when clinically indicated. Discontinue Xofigo in patients who experience life-threatening complications despite supportive care for bone marrow failure
Hematological Evaluation: Monitor blood counts at baseline and prior to every dose of Xofigo. Prior to first administering Xofigo, the absolute neutrophil count (ANC) should be ≥1.5 × 109/L, the platelet count ≥100 × 109/L, and hemoglobin ≥10 g/dL. Prior to subsequent administrations, the ANC should be ≥1 × 109/L and the platelet count ≥50 × 109/L. Discontinue Xofigo if hematologic values do not recover within 6 to 8 weeks after the last administration despite receiving supportive care
Concomitant Use With Chemotherapy: Safety and efficacy of concomitant chemotherapy with Xofigo have not been established. Outside of a clinical trial, concomitant use of Xofigo in patients on chemotherapy is not recommended due to the potential for additive myelosuppression. If chemotherapy, other systemic radioisotopes, or hemibody external radiotherapy are administered during the treatment period, Xofigo should be discontinued
Increased Fractures and Mortality in Combination With Abiraterone Plus Prednisone/Prednisolone: Xofigo is not recommended for use in combination with abiraterone acetate plus prednisone/prednisolone outside of clinical trials. At the primary analysis of the Phase 3 ERA-223 study that evaluated concurrent initiation of Xofigo in combination with abiraterone acetate plus prednisone/prednisolone in 806 asymptomatic or mildly symptomatic mCRPC patients, an increased incidence of fractures (28.6% vs 11.4%) and deaths (38.5% vs 35.5%) have been observed in patients who received Xofigo in combination with abiraterone acetate plus prednisone/prednisolone compared to patients who received placebo in combination with abiraterone acetate plus prednisone/prednisolone. Safety and efficacy with the combination of Xofigo and agents other than gonadotropin-releasing hormone analogues have not been established
Embryo-Fetal Toxicity: The safety and efficacy of Xofigo have not been established in females. Xofigo can cause fetal harm when administered to a pregnant female. Advise pregnant females and females of reproductive potential of the potential risk to a fetus. Advise male patients to use condoms and their female partners of reproductive potential to use effective contraception during and for 6 months after completing treatment with Xofigo
Administration and Radiation Protection: Xofigo should be received, used, and administered only by authorized persons in designated clinical settings. The administration of Xofigo is associated with potential risks to other persons from radiation or contamination from spills of bodily fluids such as urine, feces, or vomit. Therefore, radiation protection precautions must be taken in accordance with national and local regulations

Fluid Status: Dehydration occurred in 3% of patients on Xofigo and 1% of patients on placebo. Xofigo increases adverse reactions such as diarrhea, nausea, and vomiting, which may result in dehydration. Monitor patients’ oral intake and fluid status carefully and promptly treat patients who display signs or symptoms of dehydration or hypovolemia

Injection Site Reactions: Erythema, pain, and edema at the injection site were reported in 1% of patients on Xofigo

Secondary Malignant Neoplasms: Xofigo contributes to a patient’s overall long-term cumulative radiation exposure. Long-term cumulative radiation exposure may be associated with an increased risk of cancer and hereditary defects. Due to its mechanism of action and neoplastic changes, including osteosarcomas, in rats following administration of radium-223 dichloride, Xofigo may increase the risk of osteosarcoma or other secondary malignant neoplasms. However, the overall incidence of new malignancies in the randomized trial was lower on the Xofigo arm compared to placebo (<1% vs 2%; respectively), but the expected latency period for the development of secondary malignancies exceeds the duration of follow-up for patients on the trial

Subsequent Treatment With Cytotoxic Chemotherapy: In the randomized clinical trial, 16% of patients in the Xofigo group and 18% of patients in the placebo group received cytotoxic chemotherapy after completion of study treatments. Adequate safety monitoring and laboratory testing was not performed to assess how patients treated with Xofigo will tolerate subsequent cytotoxic chemotherapy

Adverse Reactions: The most common adverse reactions (≥10%) in the Xofigo arm vs the placebo arm, respectively, were nausea (36% vs 35%), diarrhea (25% vs 15%), vomiting (19% vs 14%), and peripheral edema (13% vs 10%). Grade 3 and 4 adverse events were reported in 57% of Xofigo-treated patients and 63% of placebo-treated patients. The most common hematologic laboratory abnormalities in the Xofigo arm (≥10%) vs the placebo arm, respectively, were anemia (93% vs 88%), lymphocytopenia (72% vs 53%), leukopenia (35% vs 10%), thrombocytopenia (31% vs 22%), and neutropenia (18% vs 5%)

Please see the full Prescribing Information for Xofigo (radium Ra 223 dichloride).

About Aliqopa (copanlisib) Injection3

Aliqopa (copanlisib) is indicated for the treatment of adult patients with relapsed follicular lymphoma (FL) who have received at least two prior systemic therapies. Accelerated approval was granted for this indication based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial.

Aliqopa is an inhibitor of phosphatidylinositol-3-kinase (PI3K) with inhibitory activity predominantly against PI3K-α and PI3K-δ isoforms expressed in malignant B cells. Aliqopa has been shown to induce tumor cell death by apoptosis and inhibition of proliferation of primary malignant B cell lines. Aliqopa inhibits several key cell-signaling pathways, including B-cell receptor signaling, CXCR12 mediated chemotaxis of malignant B cells, and NFκB signaling in lymphoma cell lines.

The clinical development program for Aliqopa also includes the Phase III study CHRONOS-4, evaluating Aliqopa in combination with standard immunochemotherapy in relapsed iNHL. More information about this trial can be found at www.clinicaltrials.gov.

IMPORTANT SAFETY INFORMATION FOR ALIQOPA (copanlisib)

Infections: Serious, including fatal, infections occurred in 19% of 317 patients treated with ALIQOPA monotherapy. The most common serious infection was pneumonia. Monitor patients for signs and symptoms of infection and withhold ALIQOPA for Grade 3 and higher infection.

Serious pneumocystis jiroveci pneumonia (PJP) infection occurred in 0.6% of 317 patients treated with ALIQOPA monotherapy. Before initiating treatment with ALIQOPA, consider PJP prophylaxis for populations at risk. Withhold ALIQOPA in patients with suspected PJP infection of any grade. If confirmed, treat infection until resolution, then resume ALIQOPA at previous dose with concomitant PJP prophylaxis.

Hyperglycemia: Grade 3 or 4 hyperglycemia (blood glucose 250 mg/dL or greater) occurred in 41% of 317 patients treated with ALIQOPA monotherapy. Serious hyperglycemic events occurred in 2.8% of patients. Treatment with ALIQOPA may result in infusion-related hyperglycemia. Blood glucose levels typically peaked 5 to 8 hours post-infusion and subsequently declined to baseline levels for a majority of patients; blood glucose levels remained elevated in 17.7% of patients one day after ALIQOPA infusion. Of 155 patients with baseline HbA1c <5.7%, 16 (10%) patients had HbA1c >6.5% at the end of treatment.

Of the twenty patients with diabetes mellitus treated in CHRONOS-1, seven developed Grade 4 hyperglycemia and two discontinued treatment. Patients with diabetes mellitus should only be treated with ALIQOPA following adequate glucose control and should be monitored closely.

Achieve optimal blood glucose control before starting each ALIQOPA infusion. Withhold, reduce dose, or discontinue ALIQOPA depending on the severity and persistence of hyperglycemia.

Hypertension: Grade 3 hypertension (systolic 160 mmHg or greater or diastolic 100 mmHg or greater) occurred in 26% of 317 patients treated with ALIQOPA monotherapy. Serious hypertensive events occurred in 0.9% of 317 patients. Treatment with ALIQOPA may result in infusion-related hypertension. The mean change of systolic and diastolic BP from baseline to 2 hours post-infusion on Cycle 1 Day 1 was 16.8 mmHg and 7.8 mmHg, respectively. The mean BP started decreasing approximately 2 hours post-infusion; BP remained elevated for 6 to 8 hours after the start of the ALIQOPA infusion. Optimal BP control should be achieved before starting each ALIQOPA infusion. Monitor BP pre- and post-infusion. Withhold, reduce dose, or discontinue ALIQOPA depending on the severity and persistence of hypertension.

Non-infectious Pneumonitis: Non-infectious pneumonitis occurred in 5% of 317 patients treated with ALIQOPA monotherapy. Withhold ALIQOPA and conduct a diagnostic examination of a patient who is experiencing pulmonary symptoms such as cough, dyspnea, hypoxia, or interstitial infiltrates on radiologic exam. Patients with pneumonitis thought to be caused by ALIQOPA have been managed by withholding ALIQOPA and administration of systemic corticosteroids. Withhold, reduce dose, or discontinue ALIQOPA depending on the severity and persistence of non-infectious pneumonitis.

Neutropenia: Grade 3 or 4 neutropenia occurred in 24% of 317 patients treated with ALIQOPA monotherapy. Serious neutropenic events occurred in 1.3%. Monitor blood counts at least weekly during treatment with ALIQOPA. Withhold, reduce dose, or discontinue ALIQOPA depending on the severity and persistence of neutropenia.

Severe Cutaneous Reaction: Grade 3 and 4 cutaneous reactions occurred in 2.8% and 0.6% of 317 patients treated with ALIQOPA monotherapy respectively. Serious cutaneous reaction events were reported in 0.9%. The reported events included dermatitis exfoliative, exfoliative rash, pruritus, and rash (including maculo-papular rash). Withhold, reduce dose, or discontinue ALIQOPA depending on the severity and persistence of severe cutaneous reactions.

Embryo-Fetal Toxicity: Based on findings in animals and its mechanism of action, ALIQOPA can cause fetal harm when administered to a pregnant woman. In animal reproduction studies, administration of copanlisib to pregnant rats during organogenesis caused embryo-fetal death and fetal abnormalities in rats at maternal doses as low as 0.75 mg/kg/day (4.5 mg/m2/day body surface area) corresponding to approximately 12% the recommended dose for patients. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential and males with female partners of reproductive potential to use effective contraception during treatment and for at least one month after the last dose.

Adverse Drug Reactions: Serious adverse reactions were reported in 44 (26%) patients. The most frequent serious adverse reactions that occurred were pneumonia (8%), pneumonitis (5%) and hyperglycemia (5%). Adverse reactions resulted in dose reduction in 36 (21%) and discontinuation in 27 (16%) patients. The most frequently observed adverse drug reactions (≥20%) in ALIQOPA-treated patients were: hyperglycemia (54%), leukopenia (36%), diarrhea (36%), decreased general strength and energy (36%), hypertension (35%), neutropenia (32%), nausea (26%), thrombocytopenia (22%), and lower respiratory tract infections (21%).

Drug Interactions: Avoid concomitant use with strong CYP3A inducers. Reduce the ALIQOPA dose to 45 mg when concomitantly administered with strong CYP3A inhibitors.

Lactation: Advise women not to breastfeed. Advise a lactating woman not to breastfeed during treatment with ALIQOPA and for at least 1 month after the last dose.

For important risk and use information about Aliqopa, please see the full Prescribing Information.

About Stivarga (regorafenib)6

In April 2017, Stivarga was approved for use in patients with hepatocellular carcinoma who have been previously treated with Nexavar (sorafenib). In the United States, Stivarga is also indicated for the treatment of patients with metastatic colorectal cancer (CRC) who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF therapy, and, if RAS wild-type, an anti-EGFR therapy. It is also indicated for the treatment of patients with locally advanced, unresectable or metastatic gastrointestinal stromal tumor (GIST) who have been previously treated with imatinib mesylate and sunitinib malate.

Regorafenib is a compound developed by Bayer. In 2011, Bayer entered into an agreement with Onyx, now an Amgen subsidiary, under which Onyx receives a royalty on all global net sales of regorafenib in oncology.

Important Safety Information for STIVARGA (regorafenib)

WARNING: HEPATOTOXICITY

Severe and sometimes fatal hepatotoxicity has occurred in clinical trials.
Monitor hepatic function prior to and during treatment.
Interrupt and then reduce or discontinue STIVARGA for hepatotoxicity as manifested by elevated liver function tests or hepatocellular necrosis, depending upon severity and persistence.
Hepatotoxicity: Severe drug-induced liver injury with fatal outcome occurred in STIVARGA-treated patients across all clinical trials. In most cases, liver dysfunction occurred within the first 2 months of therapy and was characterized by a hepatocellular pattern of injury. In metastatic colorectal cancer (mCRC), fatal hepatic failure occurred in 1.6% of patients in the STIVARGA arm and in 0.4% of patients in the placebo arm. In gastrointestinal stromal tumor (GIST), fatal hepatic failure occurred in 0.8% of patients in the STIVARGA arm. In hepatocellular carcinoma (HCC), there was no increase in the incidence of fatal hepatic failure as compared to placebo.

Liver Function Monitoring: Obtain liver function tests (ALT, AST, and bilirubin) before initiation of STIVARGA and monitor at least every 2 weeks during the first 2 months of treatment. Thereafter, monitor monthly or more frequently as clinically indicated. Monitor liver function tests weekly in patients experiencing elevated liver function tests until improvement to less than 3 times the upper limit of normal (ULN) or baseline values. Temporarily hold and then reduce or permanently discontinue STIVARGA, depending on the severity and persistence of hepatotoxicity as manifested by elevated liver function tests or hepatocellular necrosis.

Infections: STIVARGA caused an increased risk of infections. The overall incidence of infection (Grades 1-5) was higher (32% vs 17%) in 1142 STIVARGA-treated patients as compared to the control arm in randomized placebo-controlled trials. The incidence of grade 3 or greater infections in STIVARGA treated patients was 9%. The most common infections were urinary tract infections (5.7%), nasopharyngitis (4.0%), mucocutaneous and systemic fungal infections (3.3%) and pneumonia (2.6%). Fatal outcomes caused by infection occurred more often in patients treated with STIVARGA (1.0%) as compared to patients receiving placebo (0.3%); the most common fatal infections were respiratory (0.6% vs 0.2%). Withhold STIVARGA for Grade 3 or 4 infections, or worsening infection of any grade. Resume STIVARGA at the same dose following resolution of infection.

Hemorrhage: STIVARGA caused an increased incidence of hemorrhage. The overall incidence (Grades 1-5) was 18.2% in 1142 patients treated with STIVARGA vs 9.5% with placebo in randomized, placebo-controlled trials. The incidence of grade 3 or greater hemorrhage in patients treated with STIVARGA was 3.0%. The incidence of fatal hemorrhagic events was 0.7%, involving the central nervous system or the respiratory, gastrointestinal, or genitourinary tracts. Permanently discontinue STIVARGA in patients with severe or life-threatening hemorrhage and monitor INR levels more frequently in patients receiving warfarin.

Gastrointestinal Perforation or Fistula: Gastrointestinal perforation occurred in 0.6% of 4518 patients treated with STIVARGA across all clinical trials of STIVARGA administered as a single agent; this included eight fatal events. Gastrointestinal fistula occurred in 0.8% of patients treated with STIVARGA and in 0.2% of patients in the placebo arm across randomized, placebo-controlled trials. Permanently discontinue STIVARGA in patients who develop gastrointestinal perforation or fistula.

Dermatological Toxicity: In randomized, placebo-controlled trials, adverse skin reactions occurred in 71.9% of patients with STIVARGA arm and 25.5% of patients in the placebo arm including hand-foot skin reaction (HFSR) also known as palmar-plantar erythrodysesthesia syndrome (PPES) and severe rash, requiring dose modification. In the randomized, placebo-controlled trials, the overall incidence of HFSR was higher in 1142 STIVARGA-treated patients (53% vs 8%) than in the placebo-treated patients. Most cases of HFSR in STIVARGA-treated patients appeared during the first cycle of treatment. The incidences of Grade 3 HFSR (16% vs <1%), Grade 3 rash (3% vs <1%), serious adverse reactions of erythema multiforme (<0.1% vs 0%), and Stevens-Johnson syndrome (<0.1% vs 0%) were higher in STIVARGA-treated patients. Across all trials, a higher incidence of HFSR was observed in Asian patients treated with STIVARGA (all grades: 72%; Grade 3:18%). Toxic epidermal necrolysis occurred in 0.02% of 4518 STIVARGA-treated patients across all clinical trials of STIVARGA administered as a single agent. Withhold STIVARGA, reduce the dose, or permanently discontinue depending on the severity and persistence of dermatologic toxicity.

Hypertension: Hypertensive crisis occurred in 0.2% in STIVARGA-treated patients and in none of the patients in placebo arm across all randomized, placebo-controlled trials. STIVARGA caused an increased incidence of hypertension (30% vs 8% in mCRC, 59% vs 27% in GIST, and 31% vs6% in HCC). The onset of hypertension occurred during the first cycle of treatment in most patients who developed hypertension (67% in randomized, placebo-controlled trials). Do not initiate STIVARGA until blood pressure is adequately controlled. Monitor blood pressure weekly for the first 6 weeks of treatment and then every cycle, or more frequently, as clinically indicated. Temporarily or permanently withhold STIVARGA for severe or uncontrolled hypertension.

Cardiac Ischemia and Infarction: STIVARGA increased the incidence of myocardial ischemia and infarction (0.9% with STIVARGA vs 0.2% with placebo) in randomized placebo-controlled trials. Withhold STIVARGA in patients who develop new or acute cardiac ischemia or infarction and resume only after resolution of acute cardiac ischemic events if the potential benefits outweigh the risks of further cardiac ischemia.

Reversible Posterior Leukoencephalopathy Syndrome (RPLS): Reversible posterior leukoencephalopathy syndrome (RPLS), a syndrome of subcortial vasogenic edema diagnosed by characteristic finding on MRI occurred in one of 4800 STIVARGA-treated patients across all clinical trials. Perform an evaluation for RPLS in any patient presenting with seizures, severe headache, visual disturbances, confusion, or altered mental function. Discontinue STIVARGA in patients who develop RPLS.

Wound Healing Complications: Impaired wound healing complications can occur in patients who receive drugs that inhibit the VEGF signaling pathway. Therefore, STIVARGA has the potential to adversely affect wound healing. Withhold STIVARGA for at least 2 weeks prior to elective surgery. Do not administer for at least 2 weeks following major surgery and until adequate wound healing. The safety of resumption of STIVARGA after resolution of wound healing complications has not been established.

Embryo-Fetal Toxicity: STIVARGA can cause fetal harm when administered to a pregnant woman. There are no available data on STIVARGA use in pregnant women. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential and males with female partners of reproductive potential to use effective contraception during treatment with STIVARGA and for 2 months after the final dose.

Nursing Mothers: Because of the potential for serious adverse reactions in breast fed infants from STIVARGA, do not breastfeed during treatment with STIVARGA and for 2 weeks after the final dose.

Most Frequently Observed Adverse Drug Reactions in mCRC (≥30%): The most frequently observed adverse drug reactions (≥30%) in STIVARGA-treated patients vs placebo-treated patients in mCRC, respectively, were: asthenia/fatigue (64% vs 46%), pain (59% vs 48%), decreased appetite and food intake (47% vs 28%), HFSR/PPE (45% vs 7%), diarrhea (43% vs 17%), mucositis (33% vs 5%), weight loss (32% vs 10%), infection (31% vs 17%), hypertension (30% vs 8%), and dysphonia (30% vs 6%).

Most Frequently Observed Adverse Drug Reactions in GIST (≥30%): The most frequently observed adverse drug reactions (≥30%) in STIVARGA-treated patients vs placebo treated patients in GIST, respectively, were: HFSR/PPE (67% vs 12%), pain (60% vs 55%), hypertension (59% vs 27%), asthenia/fatigue (52% vs 39%), diarrhea (47% vs 9%), mucositis (40% vs 8%), dysphonia (39% vs 9%), infection (32% vs 5%), decreased appetite and food intake (31% vs 21%), and rash (30% vs 3%).

Most Frequently Observed Adverse Drug Reactions in HCC (≥30%): The most frequently observed adverse drug reactions (≥30%) in STIVARGA-treated patients vs placebo-treated patients in HCC, respectively, were: pain (55% vs 44%), HFSR/PPE (51% vs 7%), asthenia/fatigue (42% vs 33%), diarrhea (41% vs 15%), hypertension (31% vs 6%), infection (31%vs 18%), decreased appetite and food intake (31% vs 15%).

Please see full Prescribing Information, including Boxed Warning for Stivarga (regorafenib).

About Oncology at Bayer

Bayer is committed to delivering science for a better life by advancing a portfolio of innovative treatments. The oncology franchise at Bayer includes six marketed products and several other assets in various stages of clinical development. Together, these products reflect the company’s approach to research, which prioritizes targets and pathways with the potential to impact the way that cancer is treated.