Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis.

Human papillomavirus induced (HPV+) cancer incidence is rapidly rising, comprising 60-80% of oropharyngeal squamous cell carcinomas (OPSCCs); while rare, recurrent/metastatic disease accounts for nearly all related deaths. An in vivo pre-clinical model for these invasive cancers is necessary for testing new therapies. We characterize an immune competent recurrent/metastatic HPV+ murine model of OPSSC which consists of four lung metastatic (MLM) cell lines isolated from an animal with HPV+ OPSCC that failed cisplatin/radiation treatment. These individual metastatic clonal cell lines were tested to verify their origin (parental transgene expression and define their physiological properties: proliferation, metastatic potential, heterogeneity and sensitivity/resistance to cisplatin and radiation. All MLMs retain expression of parental HPV16 E6 and E7 and degrade P53 yet are heterogeneous from one another and from the parental cell line as defined by Illumina expression microarray. Consistent with this, reverse phase protein array defines differences in protein expression/activation between MLMs as well as the parental line. While in vitro growth rates of MLMs are slower than the parental line, in vivo growth of MLM clones is greatly enhanced. Moreover, in vivo resistance to standard therapies is dramatically increased in 3 of the 4 MLMs. Lymphatic and/or lung metastasis occurs 100% of the time in one MLM line. This recurrent/metastatic model of HPV+ OPSCC retains the characteristics evident in refractory human disease (heterogeneity, resistance to therapy, metastasis in lymph nodes/lungs) thus serving as an ideal translational system to test novel therapeutics. Moreover, this system may provide insights into the molecular mechanisms of metastasis.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


mTOR inhibition as an adjuvant therapy in a metastatic model of HPV+ HNSCC.

Effective treatments for recurrent/metastatic human papillomavirus-positive (HPV+) head and neck squamous cell cancer (HNSCC) are limited. To aid treatment development, we characterized a novel murine model of recurrent/metastatic HPV+ HNSCC. Further analysis of the parental tumor cell line and its four recurrent/metastatic derivatives led to preclinical testing of an effective treatment option for this otherwise fatal disease. Reverse phase protein arrays identified key signaling cascades in the parental and recurrent/metastatic cell lines. While protein expression profiles differed among the recurrent/metastatic cell lines, activated proteins associated with the mTOR signaling cascade were a commonality. Based on these data, mTOR inhibition was evaluated as an adjuvant treatment for recurrent/metastatic disease. mTOR activity and treatment response were assessed in vitro by western blot, Seahorse, proliferation, clonogenic, and migration assays. Standard-of-care cisplatin/radiation therapy (CRT) versus CRT/rapamycin were compared in vivo. Low-dose rapamycin inhibited mTOR signaling, decreasing proliferation (43%) and migration (62%) while it enhanced CRT-induced cytotoxicity (3.3 fold) in clonogenic assays. Furthermore, rapamycin re-sensitized CRT-resistant, metastatic tumors to treatment in vivo, improving long-term cures (0-30% improved to 78-100%, depending on the recurrent/metastatic cell line) and limiting lymph node metastasis (32%) and lung metastatic burden (30 fold). Studies using immune compromised mice suggested rapamycin’s effect on metastasis is independent of the adaptive immune response. These data suggest a role of mTOR activation in HPV+ HNSCC recurrent/metastatic disease and that adjuvant mTOR inhibition may enhance treatment of resistant, metastatic cell populations at the primary site and limit distant metastasis.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Prognostic impact of KRAS mutant type and MET amplification in metastatic and recurrent gastric cancer patients treated with first-line S-1 plus cisplatin chemotherapy.

Receptor tyrosine kinase (RTK)-related genes, including HER2, EGFR, MET, FGFR2 and KRAS, are target molecules that are clinically beneficial in gastric cancer (GC). We investigated the correlation between RTK-related genes and the curative effect of first-line S-1 plus cisplatin (SP) combination chemotherapy in metastatic and recurrent GC. We enrolled 150 patients with histopathologically confirmed metastatic and recurrent GC treated with SP. KRAS mutation was detected using direct sequencing. DNA copy number was measured by real-time PCR. Formalin-fixed paraffin-embedded specimens were examined immunohistochemically for HER2, EGFR, FGFR2 and MET. Among 144 patients, KRAS mutation was detected in five (3.5%) at codon 12 and one (0.7%) at codon 13. FGFR2, EGFR, HER2, MET and KRAS gene amplification was suggested in 4.4%, 5.9%, 9%, 3.7% and 10.3% of patients, respectively. KRAS mutation, but not KRAS amplification, was associated with significantly shorter overall and progression-free survival. MET membranous overexpression was associated with a significantly higher tumor response. MET amplification was associated with significantly shorter overall survival. We show for the first time that KRAS mutation and MET amplification are promising predictive markers in metastatic and recurrent GC patients treated with SP. KRAS status may be a useful prognostic marker in patients treated with SP.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies.

Cell-free (cf) DNA in the plasma of cancer patients offers an easily obtainable source of biologic material for mutation analysis. Plasma samples from 157 patients with advanced cancers who progressed on systemic therapy were tested for 21 mutations in BRAF, EGFR, KRAS, and PIK3CA using the BEAMing method and results were compared to mutation analysis of archival tumor tissue from a CLIA-certified laboratory obtained as standard of care from diagnostic or therapeutic procedures. Results were concordant for archival tissue and plasma cfDNA in 91% cases for BRAF mutations (kappa = 0.75, 95% confidence interval [CI] 0.63 – 0.88), in 99% cases for EGFR mutations (kappa = 0.90, 95% CI 0.71- 1.00), in 83% cases for KRAS mutations (kappa = 0.67, 95% CI 0.54 – 0.80) and in 91% cases for PIK3CA mutations (kappa = 0.65, 95% CI 0.46 – 0.85). Patients (n = 41) with > 1% of KRAS mutant cfDNA had a shorter median survival compared to 20 patients with </= 1% of KRAS mutant DNA (4.8 vs. 7.3 months, p=0.008). Similarly, 67 patients with >1% of mutant cfDNA (BRAF, EGFR, KRAS, or PIK3CA) had a shorter median survival compared to 33 patients with </= 1% of mutant cfDNA (5.5 vs. 9.8 months, p = 0.001), which was confirmed in multivariable analysis. [Corrected]

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Iron Overload in Hereditary Tyrosinemia Type 1 Induces Liver Injury through the Sp1/Tfr2/Hepcidin Axis.

Iron is an essential metal for fundamental metabolic processes, but little is known regarding the involvement of iron in other nutritional disorders. In the present study, we investigated disordered iron metabolism in a murine model of hereditary tyrosinemia type I (HT1), a disease of the tyrosine degradation pathway.
We analysed the status of iron accumulation following NTBC withdrawal from fah-/- mice, a murine model for HT1. Liver histology and serum parameters were used to assess the extent of liver injury and iron deposition. To determine the physiological significance of iron accumulation, mice were subjected to a low-iron food intake to reduce the iron accumulation. Mechanistic studies were performed on tissues and cells using immunoblotting, qRT-PCR, adenovirus transfection and other assays.
Severe iron overload was observed in the murine model of HT1 with dramatically elevated hepatic and serum iron levels. Mechanistic studies revealed that downregulation and dysfunction of Tfr2 decreased hepcidin, leading to iron overload. The fah-/- hepatocytes lost the ability of transferrin-sensitive induction of hepcidin. Forced expression of Tfr2 in the murine liver reduced the iron accumulation. Moreover, transcription factor Sp1 was downregulated and identified as a new regulator of Tfr2 here. Additionally, low-iron food intake effectively reduced the iron deposits, protected the liver and prolonged the survival in these mice.
Iron was severely overloaded in the HT1 mice via the Sp1/Tfr2/Hepcidin axis. The iron overload induced liver injury in the HT1 mice, and reduction of the iron accumulation ameliorated liver injury.
Primary and secondary iron overload is an abnormal status affecting millions of people worldwide. Here, we reported severe iron overload in a murine model of HT1, a disease of the tyrosine degradation pathway, and elucidated the mechanistic basis and the physiological significance of iron overload in HT1. These studies are of general interest not only with respect to secondary iron-induced liver injury in HT1 but also are important to elucidate the crosstalk between the two metabolic pathways.
Copyright © 2016. Published by Elsevier B.V.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!