A Vulnerability of a Subset of Colon Cancers with Potential Clinical Utility.

BRAF(V600E) mutant colon cancers (CCs) have a characteristic gene expression signature that is also found in some tumors lacking this mutation. Collectively, they are referred to as "BRAF-like" tumors and represent some 20% of CCs. We used a shRNA-based genetic screen focused on genes upregulated in BRAF(V600E) CCs to identify vulnerabilities of this tumor subtype that might be exploited therapeutically. Here, we identify RANBP2 (also known as NUP358) as essential for survival of BRAF-like, but not for non-BRAF-like, CC cells. Suppression of RANBP2 results in mitotic defects only in BRAF-like CC cells, leading to cell death. Mechanistically, RANBP2 silencing reduces microtubule outgrowth from the kinetochores, thereby inducing spindle perturbations, providing an explanation for the observed mitotic defects. We find that BRAF-like CCs display far greater sensitivity to the microtubule poison vinorelbine both in vitro and in vivo, suggesting that vinorelbine is a potential tailored treatment for BRAF-like CCs.
Copyright © 2016 Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Basic biology and therapeutic implications of lncRNA.

Long non-coding RNAs (lncRNA), a class of non-coding RNA molecules recently identified largely due to the efforts of FANTOM, and later GENCODE and ENCODE consortia, have been a subject of intense investigation in the past decade. Extensive efforts to get deeper understanding of lncRNA biology have yielded evidence of their diverse structural and regulatory roles in protecting chromosome integrity, maintaining genomic architecture, X chromosome inactivation, imprinting, transcription, translation and epigenetic regulation. Here we will briefly review the recent studies in the field of lncRNA biology focusing mostly on mammalian species and discuss their therapeutic implications.
Copyright © 2015 Elsevier B.V. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial.

In pancreatic ductal adenocarcinoma, the CCL2-CCR2 chemokine axis is used to recruit tumour-associated macrophages for construction of an immunosuppressive tumour microenvironment. This pathway has prognostic implications in pancreatic cancer, and blockade of CCR2 restores anti-tumour immunity in preclinical models. We aimed to establish the safety, tolerability, and recommended phase 2 oral dose of the CCR2 inhibitor PF-04136309 in combination with FOLFIRINOX chemotherapy (oxaliplatin and irinotecan plus leucovorin and fluorouracil).
We did this open-label, dose-finding, non-randomised, phase 1b study at one centre in the USA. We enrolled treatment-naive patients aged 18 years or older with borderline resectable or locally advanced biopsy-proven pancreatic ductal adenocarcinoma, an Eastern Cooperative Oncology Group performance status of 1 or less, measurable disease as defined by Response Evaluation Criteria in Solid Tumors version 1.1, and normal end-organ function. Patients were allocated to receive either FOLFIRINOX alone (oxaliplatin 85 mg/m(2), irinotecan 180 mg/m(2), leucovorin 400 mg/m(2), and bolus fluorouracil 400 mg/m(2), followed by 2400 mg/m(2) 46-h continuous infusion), administered every 2 weeks for a total of six treatment cycles, or in combination with oral PF-04136309, administered at a starting dose of 500 mg twice daily in a standard 3 + 3 dose de-escalation design. Both FOLFIRINOX and PF-04136309 were simultaneously initiated with a total treatment duration of 12 weeks. The primary endpoints were the safety, tolerability, and recommended phase 2 dose of PF-04136309 plus FOLFIRINOX, with an expansion phase planned at the recommended dose. We analysed the primary outcome by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01413022.
Between April 19, 2012, and Nov 12, 2014, we treated 47 patients with FOLFIRINOX alone (n=8) or with FOLFIRINOX plus PF-04136309 (n=39). One patient had a dose-limiting toxic effect in the dose de-escalation group receiving FOLFIRINOX plus PF-04136309 at 500 mg twice daily (n=6); this dose was established as the recommended phase 2 dose. We pooled patients in the expansion-phase group (n=33) with those in the dose de-escalation group that received PF-04136309 at the recommended phase 2 dose for assessment of treatment-related toxicity. Six (75%) of the eight patients receiving FOLFIRINOX alone were assessed for treatment toxicity, after exclusion of two (25%) patients due to insurance coverage issues. The median duration of follow-up for treatment toxicity was 72·0 days (IQR 49·5-89·0) in the FOLFIRINOX alone group and 77·0 days (70·0-90·5) in the FOLFIRINOX plus PF-04136309 group. No treatment-related deaths occurred. Two (5%) patients in the FOLFIRINOX plus PF-04136309 group stopped treatment earlier than planned due to treatment-related toxic effects. Grade 3 or higher adverse events reported in at least 10% of the patients receiving PF-04136309 included neutropenia (n=27), febrile neutropenia (n=7), lymphopenia (n=4), diarrhoea (n=6), and hypokalaemia (n=7). Grade 3 or higher adverse events reported in at least 10% of patients receiving FOLFIRINOX alone were neutropenia (n=6), febrile neutropenia (n=1), anaemia (n=2), lymphopenia (n=1), diarrhoea (n=2), hypoalbuminaemia (n=1), and hypokalaemia (n=3). Therapy was terminated because of treatment-related toxicity in one (17%) of the six patients receiving FOLFIRINOX alone. 16 (49%) of 33 patients receiving FOLFIRINOX plus PF-04136309 who had undergone repeat imaging achieved an objective tumour response, with local tumour control achieved in 32 (97%) patients. In the FOLFIRINOX alone group, none of the five patients with repeat imaging achieved an objective response, although four (80%) of those patients achieved stable disease.
CCR2-targeted therapy with PF-04136309 in combination with FOLFIRINOX is safe and tolerable.
Washington University-Pfizer Biomedical Collaborative.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Testicular Microlithiasis: What Should You Recommend?

Ultrasound surveillance of patients with testicular microlithiasis (TM) has been recommended because of the reported association between TM and testicular cancer (TC). The purpose of this review is to summarize what is known about TM and discuss recent recommendations.
The most recent recommendations do not support the use of routine ultrasound surveillance for patients with TM who are at low risk for TC. A template for possible use in reporting TM is also provided.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis.

Pulmonary alveolar proteinosis (PAP) is a severe autoimmune disease caused by autoantibodies that neutralize GM-CSF resulting in impaired function of alveolar macrophages. In this study, we characterize 21 GM-CSF autoantibodies from PAP patients and find that somatic mutations critically determine their specificity for the self-antigen. Individual antibodies only partially neutralize GM-CSF activity using an in vitro bioassay, depending on the experimental conditions, while, when injected in mice together with human GM-CSF, they lead to the accumulation of a large pool of circulating GM-CSF that remains partially bioavailable. In contrast, a combination of three non-cross-competing antibodies completely neutralizes GM-CSF activity in vitro by sequestering the cytokine in high-molecular-weight complexes, and in vivo promotes the rapid degradation of GM-CSF-containing immune complexes in an Fc-dependent manner. Taken together, these findings provide a plausible explanation for the severe phenotype of PAP patients and for the safety of treatments based on single anti-GM-CSF monoclonal antibodies.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!