CYP1A2 – a novel genetic marker for early aromatase inhibitor response in the treatment of breast cancer patients.

Endocrine resistance is a major obstacle to optimal treatment effect in breast cancer. Some genetic markers have been proposed to predict response to aromatase inhibitors (AIs) but the data is insufficient. The aim of the study was to find new genetic treatment predictive markers of AIs.
The ongoing population-based BC-blood study in Lund, Sweden includes women with primary breast cancer. This paper is based on AI-treated patients with estrogen receptor positive tumors who underwent breast cancer surgery in 2002-2008. First, an exploratory analysis of 1931 SNPs in 227 genes involved in absorption, distribution, metabolism, and elimination of multiple medications, using DMET chips, was conducted in a subset of the cohort with last follow-up in December 31(st) 2011 (13 cases, 11 controls). Second, selected SNPs from the first analysis were re-analyzed concerning risk for early breast cancer events in the extended cohort of 201 AI-treated with last follow-up in June 30(th) 2014. Clinical data were obtained from medical records and population registries.
Only CYP1A2 rs762551 C-allele was significantly associated with increased risk for early events in the 24 patients (P = 0.0007) and in the extended cohort, adjusted Hazard ratio (HR) 2.22 (95 % CI 1.03-4.80). However, the main prognostic impact was found within five years, adjusted HR 7.88 (95 % CI 2.13-29.19). The impact of the CYP1A2 rs762551 C-allele was modified by a functional polymorphism in the regulator gene AhR Arg554Lys (G > A). Compared to patients who were homozygous for the major allele in both genes (CYP1A2 A/A and AhR G/G), a 9-fold risk for early events was found in patients who had at least one minor allele in both genes, adjusted HR 8.95 (95 % CI 2.55-31.35), whereas patients with at least one minor allele in either but not both genes had a 3-fold risk for early events, adjusted HR 2.81 (95 % CI 1.07-7.33). The impact of CYP1A2 rs762551 C-allele was also modified by the CYP19A1 rs4646 C/C, adjusted HR 3.39 (95 % CI 1.60-7.16) for this combination. This association was strongest within the first five years, adjusted HR 10.42 (95 % CI 3.45-31.51).
CYP1A2 rs762551 was identified as a new potential predictive marker for early breast cancer events in AI-treated breast cancer patients. Moreover, combined genotypes of CYP1A2 rs762551 and CYP19A1 rs4646 or AhR Arg554Lys could further improve prediction of early AI-treatment response. If confirmed, these results may provide a way to more personalized medicine.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1α by Chemical Proteomics.

We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


A Simple Algorithm for Population Classification.

A single-nucleotide polymorphism (SNP) is a variation in the DNA sequence that occurs when a single nucleotide in the genome differs across members of the same species. Variations in the DNA sequences of humans are associated with human diseases. This makes SNPs as a key to open up the door of personalized medicine. SNP(s) can also be used for human identification and forensic applications. Compared to short tandem repeat (STR) loci, SNPs have much lower statistical testing power for individual recognition due to the fact that there are only 3 possible genotypes for each SNP marker, but it may provide sufficient information to identify the population to which a certain samples may belong. In this report, using eight SNP markers for 641 samples, we performed a standard statistical classification procedure and found that 86% of the samples could be classified accurately under a two-population model. This study suggests the potential use of SNP(s) in population classification with a small number (n ≤ 8) of genetic markers for forensic screening, biodiversity and disaster victim controlling.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Ubiquitination and degradation of ribonucleotide reductase M1 by the polycomb group proteins RNF2 and Bmi1 and cellular response to gemcitabine.

Ribonucleotide reductase M1 (RRM1) is required for mammalian deoxyribonucleotide (dNTP) metabolism. It is the primary target of the antimetabolite drug gemcitabine, which is among the most efficacious and most widely used cancer therapeutics. Gemcitabine directly binds to RRM1 and irreversibly inactivates ribonucleotide reductase. Intra-tumoral RRM1 levels are predictive of gemcitabine’s therapeutic efficacy. The mechanisms that regulate intracellular RRM1 levels are largely unknown. Here, we identified the E3 ubiquitin-protein ligases RNF2 and Bmi1 to associate with RRM1 with subsequent poly-ubiquitination at either position 48 or 63 of ubiquitin. The lysine residues 224 and 548 of RRM1 were identified as major ubiquitination sites. We show that ubiquitinated RRM1 undergoes proteasome-mediated degradation and that targeted post-transcriptional silencing of RNF2 and Bmi1 results in increased RRM1 levels and resistance to gemcitabine. Immunohistochemical analyses of 187 early-stage lung cancer tumor specimens revealed a statistically significant co-expression of RRM1 and Bmi1. We were unable to identify suitable reagents for in situ quantification of RNF2. Our findings suggest that Bmi1 and possibly RNF2 may be attractive biomarkers of gemcitabine resistance in the context of RRM1 expression. They also provide novel information for the rational design of gemcitabine-proteasome inhibitor combination therapies, which so far have been unsuccessful if given to patients without taking the molecular context into account.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Metalloprobes: Fluorescence imaging of multidrug resistance (MDR1) P-Glycoprotein (Pgp)-mediated functional transport activity in cellulo.

Radiolabeled metalloprobes offer sensitive tools for evaluating quantitative accumulation of chemical entities within pooled cell populations. Although beneficial in translational nuclear imaging, this method precludes interrogation of effects resulting from variations at a single cell level, within the same segment of cell population. Compared with radiotracer bioassays, fluorescence imaging offers a cost-efficient technique to assess accumulation of metalloprobes at a single cell level, and determine their intracellular localization under live cell conditions. To evaluate, whether or not radiotracer assay and fluorescence imaging provide complementary information on utility of metalloprobes to assess functional expression of P-glycoprotein (Pgp) on plasma membrane of tumor cells, imaging studies of fluorescent cationic Ga(III)-ENBDMPI (bis(3-ethoxy-2-hydroxy-benzylidene)-N,N’-bis(2,2-dimethyl-3-amino-propyl)ethylenediamine) and its neutral counterpart Zn(II)-ENBDMPI are performed. While the uptake profiles of the cationic metalloprobe are inversely proportional to expression of Pgp in tumor cells, the accumulation profiles of the neutral Zn(II)-ENBDMPI in non-MDR and MDR cells are not significantly impacted. The cationic Ga(III)-ENBDMPI maps with Mito-Tracker Red, thereby confirming localization within mitochondria of non-MDR (Pgp-) cells. Depolarization of both plasmalemmal and mitochondrial potentials decreased retention of the cationic Ga(III)-ENBDMPI within the mitochondria. Additionally, LY335979, an antagonist-induced accumulation of the cationic Ga(III) metalloprobe in MDR (Pgp+) cells indicated specificity of the agent. Compared with traits of Ga(III)-ENBDMPI as a Pgp recognized substrate, Zn(II)-ENBDMPI demonstrated uptake in both MDR and non-MDR cells thus indicating the significance of overall molecular charge in mediating Pgp recognition profiles. Combined data indicate that live cell imaging can offer a cost-effective methodology for monitoring functional Pgp expression.
Copyright © 2016. Published by Elsevier Inc.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!