Assessing the Effects of Concurrent versus Sequential Cisplatin/Radiotherapy on Immune Status in Lung Tumor-Bearing C57BL/6 Mice.

Concurrent and sequential cisplatin-based chemoradiotherapy regimens are standard therapeutic approaches in cancer treatment. Recent clinical data suggest that these different dosing schedules may adversely affect antigen-specific immunotherapy. The goal of the present preclinical study was to explore the effects of concurrent and sequential cisplatin/radiotherapy on immune status in a lung cancer mouse model. A total of 150 C57BL/6 mice were randomized into six treatment groups: control; 8 Gy thoracic radiotherapy (dose schedules 1 and 2); cisplatin 2.5 mg/kg i.p.; cisplatin + radiotherapy (concurrent); and cisplatin + radiotherapy (sequential; n = 25, all groups). At the end of the study (week 41), serum cytokines were assessed by multiplex immunoassay, surface markers of spleen-derived lymphocytes were assessed by immunostaining and flow cytometry, lung tumor expression of programmed death ligands 1 and 2 (PD-L1/2) was evaluated by immunohistochemistry, and miRNA profiling was performed in serum and lymphocytes by quantitative real-time PCR. Lung whole mounts were prepared to assess treatment effects on lung tumor foci formation. The results showed that sequential chemoradiotherapy (two cycles of cisplatin followed by 8 Gy radiotherapy) had equivalent antitumor activity as concurrent therapy. However, sequential cisplatin/radiotherapy resulted in significant differences in several immune response biomarkers, including regulatory T cells, miR-29c, expression of costimulatory molecule CD28, and serum IFNγ. PD-L1 and PD-L2 were strongly expressed in tumor foci, but no trend was seen between groups. These results suggest that monitoring immune status may be necessary when designing treatment regimens combining immunotherapy with chemoradiotherapy.
©2015 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Surface-based chondroblastoma of the tibia: a unique presentation.

Chondroblastoma is a benign tumor classically located within the epiphysis of the long bones. The tumor is believed to arise from immature cells of the epiphyseal plate. Purely metaphyseal or diaphyseal chondroblastoma is exceedingly uncommon, occurring in approximately 2% of chondroblastoma cases. In all of these non-epiphyseal-based cases, the tumor has been intramedullary.
We describe the histologic and imaging features of the first detailed description of a surface-based chondroblastoma.
The tumor was located in the anteromedial midshaft of the tibia in a 47-year-old male.
We discuss the diagnostic considerations and possible etiology of chondroblastoma given this unusual location.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Oral proteasome inhibitor with strong preclinical efficacy in myeloma models.

The proteasome is a validated anti-cancer target and various small-molecule inhibitors are currently in clinical development or on the market. However, adverse events and resistance associated with those proteasome inhibitors indicate the need for a new generation of drugs. Therefore, we focused on developing an oral proteasome inhibitor with improved efficacy and safety profiles.
The in vitro inhibition of the 20S proteasome catalytic activities was determined in human multiple myeloma (MM) cellular lysates with fluorogenic peptide substrates specific for each catalytic subunit. Cell cytotoxicity was assessed with the ATP bioluminescence assay using human cell samples from tumor cell lines, MM patients or normal healthy donors. In mice bearing human MM xenografts, a single dose of LC53-0110 was administered orally, and concentration-time profiles of LC53-0110 and the 20S proteasome catalytic activities in plasma, blood, and tumor were determined. The efficacy of repeat-dose compound with regard to tumor growth inhibition in vivo was also evaluated in the same MM xenograft models.
LC53-0110 is far more specific for the chymotrypsin-like proteolytic (β5) site of the 20S proteasome as compared to bortezomib, carfilzomib, or ixazomib. LC53-0110 treatment showed accumulation of ubiquitinated proteins, inhibited cell viability with a low nM range potency in various tumor cell lines, and showed potent activity on CD138(+) cells isolated from MM patients who are resistant/refractory to current FDA-approved drug treatment. When a single dose was administered orally to tumor-bearing mice, LC53-0110 showed both greater maximum and sustained tumor proteasome inhibition as compared with ixazomib in MM xenograft models. The robust pharmacodynamic responses in tumor correlated with tumor growth regression. In addition, LC53-0151, an analog of LC53-0110, in combination with pomalidomide, a third-generation immunomodulatory drug, showed synergistic inhibition of tumor growth both in vitro and in the xenograft mouse model.
In view of the in vitro, in vivo, and ex vivo profiles, further investigation of additional LC compounds in preclinical studies is warranted for the nomination of a clinical development candidate.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.
Copyright © 2016, American Association for the Advancement of Science.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Activated platelet-T-cell conjugates in peripheral blood of patients with HIV infection: coupling coagulation/inflammation and T cells.

Despite successfully suppressed viremia by treatment, patients with high levels of biomarkers of coagulation/inflammation are at an increased risk of developing non-AIDS defining serious illnesses such as cardiovascular diseases. Thus, there is a relationship between persistent immune activation and coagulation/inflammation, although the mechanisms are poorly understood. Platelets play an important role in this process. Although interactions between platelets and elements of the innate immune system, such as monocytes, are well described, little is known about the interaction between platelets and the adaptive immune system.
We investigated the interaction of a component of the coagulation system, platelets, and the adaptive immune system T cells.
Healthy controls and combination antiretroviral therapy (cART)-treated HIV-infected patients with viral loads of less than 40 copies/ml for more than 15 months were analysed for platelet-T-cell conjugate formation.
Platelets can form conjugates with T cells and were preferentially seen in CD4 and CD8 T-cell subsets with more differentiated phenotypes [memory, memory/effector and terminal effector memory (TEM)]. Compared with healthy controls, these conjugates in patients with HIV infection were more frequent, more often composed of activated platelets (CD42bCD62P), and were significantly associated with the D-dimer serum levels.
These data support a model in which platelet-T-cell conjugates may play a critical role in the fast recruitment of antigen-experienced T cells to the place of injury. This mechanism can contribute in maintaining a state of coagulation/inflammation observed in these patients contributing to the pathology of the disease.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!