On April 17, 2016 Precision Biologics, a NantWorks affiliated clinical stage biotechnology company focused on developing therapeutic and diagnostic products for the early detection and treatment of cancer and a participant in the Cancer MoonShot 2020 program, reported it will present a poster titled, "Identification of target and cytotoxicity of novel monoclonal antibody NEO-201 in ovarian and uterine cancer subtypes" at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting 2016 (Press release, Precision Biologics, APR 18, 2016, View Source [SID:1234511010]).
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
"With better identification of cancer subtypes that express the NEO201 target, we are taking a step closer to personalized medicine for women diagnosed with ovarian and uterine cancer," said Philip M. Arlen, M.D., President & Chief Executive Officer of Precision Biologics, Inc. of Rockville, MD. "Without the visionary support of NantWorks and Dr. Patrick Soon-Shiong, tumor-specific and neo-epitope cytotoxicity research would face a much slower development path, potentially impacting cancer morbidity and mortality rates."
At AACR (Free AACR Whitepaper), Precision Biologics will present preclinical data on the cytotoxic effects of NEO-201 in uterine and ovarian cancers. NEO-201 is an investigational, humanized monoclonal antibody that targets a novel neo-antigen with sequence homology to the tumor-associated antigens (TAA) CEACAM-5 and CEACAM-6, but highly sensitive to epithelial tumors with little cross reactivity to normal tissue. It is being explored as a potential therapy for epithelial malignancies. NEO-201 demonstrates antibody-dependent cellular cytotoxicity and specifically targets cancer tissues with minimal reactivity in normal tissues.
"Accelerating clinical development of neo-epitopes is a key focus of our immunotherapy initiative. Given the complexity of ovarian and uterine cancer and the great unmet need to overcome these cancers which strike women in the prime of their lives, the work that Precision Biologics is doing with NEO-201 to drive combination immunotherapy reinforces why NantWorks and Cancer MoonShot 2020 supports this program," said Patrick Soon-Shiong, M.D., founder of NantWorks and leader of the Cancer MoonShot 2020 program.
Results from in vitro cytotoxicity assays and inhibition of tumor growth in nude mice will be reported, both as single agents and in combination with a Natural Killer cell line. The preclinical data indicate that NEO-201 demonstrates tumor-specific cytotoxicity and provides promise for the development of TAA-directed therapy for ovarian and uterine malignancies.
Presentation Information: Identification of target and cytotoxicity of novel monoclonal antibody NEO-201 in ovarian and uterine cancer subtypes
Monday, April 18, 2016 at 8:00am-12:00pm in Section 25, Poster Board 27, at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) annual meeting, Ernest N. Morial Convention Center, New Orleans, LA.
Abstract Title: # 1496
Author: M. K. Neuman1, L. Hernandez1, X. P. Wang2, O. Saric2, A. Dubeykovskiy2, P. Arlen1,2 and C. M. Annunziata1,1 National Cancer Institute, Bethesda, MD, 2Precision Biologics, Rockville, MD
About Cancer MoonShot 2020
The Cancer MoonShot 2020 Program is one of the most comprehensive cancer collaborative initiative launched to date, seeking to accelerate the potential of combination immunotherapy as the next generation standard of care in cancer patients. This initiative aims to explore a new paradigm in cancer care by initiating randomized Phase II trials in patients at all stages of disease in 20 tumor types in 20,000 patients within the next 36 months. These findings will inform Phase III trials and the aspirational MoonShot to develop an effective vaccine-based immunotherapy to combat cancer by 2020.