Endocyte Announces Promising Preclinical Data for Application of SMDC Technology in CAR T Cell Therapy in Late-Breaking Abstract at American Association for Cancer Research (AACR) Annual Meeting 2016

On April 19, 2016 Endocyte, Inc. (NASDAQ:ECYT), a leader in developing targeted small molecule drug conjugates (SMDCs) and companion imaging agents for personalized therapy, reported in a late-breaking poster session the presentation of new research from investigators and faculty at the Purdue University Center for Drug Discovery on the application of Endocyte’s SMDC technology in a chimeric antigen receptor (CAR) therapy setting (Poster #LB-254 – A Universal Remedy for CAR T cell limitations) at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting 2016 in New Orleans (Press release, Endocyte, APR 19, 2016, View Source [SID:1234511043]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"This technology and these data reflect a potentially significant advance in overcoming several challenges specific to CAR therapies as well as the powerful versatility of Endocyte’s SMDC platform," said Ron Ellis, president and CEO at Endocyte. "This is still in the early stages of research, and we look forward to our continued collaboration with Phil Low and his lab at the Purdue Drug Discovery Center to further explore the potential of this CAR therapeutic approach as we look to build our SMDC platform in immuno-oncology."

The presentation discusses a novel approach that makes possible the engineering of a single universal CAR T cell, which binds with extraordinarily high affinity to a benign molecule designated as FITC. These cells are then used to treat various cancer types when co-administered with bispecific SMDC adaptor molecules. These unique bispecific adaptors are constructed with a FITC molecule and a tumor-homing molecule to precisely bridge the universal CAR T cell with the cancer cells, which causes localized T cell activation. Data in this poster show that anti-tumor activity in mice is induced only when both the universal CAR T cells plus the correct antigen-specific adaptor molecules are present. Findings also show that anti-tumor activity and toxicity can be sensitively controlled by adjusting the dosing of the administered adaptor molecule. Furthermore, treatment of antigenically heterogeneous tumors can be achieved by administration of a mixture of the desired antigen-specific adaptors. Thus, several challenges of current CAR T cell therapies, such as i) the inability to control the rate of cytokine release and tumor lysis, ii) the absence of an "off switch" that can terminate cytotoxic activity when tumor eradication is complete, and iii) a requirement to generate a different CAR T cell for each unique tumor antigen, may be solved or mitigated using this novel universal CAR T cell approach.

"Through our strong, ongoing collaboration with Endocyte, we are optimistic that this exciting approach might advance the enormous potential of CAR T cell therapies to benefit patients in truly meaningful ways," said Phil Low, Ph.D., professor of chemistry and director of the Center for Drug Discovery at Purdue University. Dr. Low is the chief scientific officer, a board member and founder of Endocyte.

Endocyte and Purdue University have an exclusive agreement to research, develop and commercialize SMDC therapeutics and companion imaging agents for the treatment of disease through a long-standing partnership with Dr. Low and Purdue University. Endocyte holds the global rights to the CAR and SMDC adaptors for all indications. Additionally, Endocyte and Purdue University jointly own this technology, which is covered by both allowed and pending patent applications.

Sensitive ELISA Method for the Measurement of Catabolites of Antibody-Drug Conjugates (ADCs) in Target Cancer Cells.

A new, sensitive ELISA method has been developed which measures catabolites in cells and media upon processing of antibody-drug conjugates (ADCs) by target cancer cells. This ELISA method, exemplified for maytansinoid ADCs, uses competitive inhibition by a maytansinoid analyte of the binding of biotinylated antimaytansine antibody to an immobilized BSA-maytansinoid conjugate. Synthetic standards of several maytansinoid catabolites derived from ADCs with different linkers were tested and showed similar inhibition curves, with an EC50 of about 0.1 nM (0.03 pmol in an assay volume of 0.25 mL). This high sensitivity allowed quantification of catabolites from a methanolic cell extract and from the medium, generated from an ADC in 1 day using only about 1 million cells. The processing of anti-EpCAM and anti-CanAg ADCs with noncleavable linker (SMCC-DM1), disulfide linker (SPDB-DM4), and charged sulfonate-bearing disulfide linker (sulfo-SPDB-DM4), each containing an average of about four maytansinoid molecules per antibody, were compared in colon cancer cell lines (COLO 205 and HT-29). An 8-10-fold higher total level of catabolite was observed for anti-CanAg ADCs than for anti-EpCAM ADCs upon processing by COLO 205 cells, consistent with a higher cell-surface expression of CanAg. In a multidrug resistant HCT-15 colon cancer cell line, the anti-EpCAM-SPDB-DM4 linker conjugate was not cytotoxic and showed a significantly lower level of catabolite within cells compared to that in medium, presumably due to Pgp-mediated efflux of the nonpolar DM4 catabolite. In contrast, sulfo-SPDB-DM4 and SMCC-DM1 linker conjugates were cytotoxic, which correlated with higher amounts of catabolites found within the HCT-15 cells relative to amounts in medium. In a nonmultidrug resistant HT-29 cell line, the anti-EpCAM-SPDB-DM4 linker conjugate was cytotoxic, with most of the catabolite found in cells and little in the medium. In conclusion, this highly sensitive ELISA method for measurement of ADC catabolite is convenient for screening multiple ADC parameters such as linkers and antibodies in a number of cell lines, does not require concentration of sample or extraction of media, and is complementary to other reported methods such as radiolabeling of ADCs or mass spectrometry.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Statistics of the distribution of the abundance of molecules with various drug loads in maytansinoid antibody-drug conjugates.

The maytansinoid antibody-drug conjugates (ADCs) in clinical development for cancer therapy each contain a derivative of the microtubule-targeting agent, maytansine, covalently attached to the antibody via an engineered linker. A sample of any of these conjugates contains molecules with different numbers of maytansinoid molecules, or "drug" loads, the relative abundance of which can be determined by mass spectrometry. We examined the accuracy of the Poisson distribution and the binomial distribution in predicting the relative abundance of species with different drug loads for three antibody-maytansinoid conjugates with different antibodies and linker-maytansinoid pairings. We used variance, calculated from the experimental mass distribution data, as the parameter to determine the optimal value n of the binomial distribution number of trials. The accuracy of the Poisson distribution in predicting distribution of the species abundance in these conjugates varied among the conjugates. In contrast, the accuracy of the binomial distribution was similar for all three conjugates and comparable to the best accuracy of the Poisson distribution, as supported by a paired t-test.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Pharmacodynamics and pharmacokinetics of oral topotecan in patients with advanced solid tumours and impaired renal function.

The aim of the study was to determine the effect of renal impairment and prior platinum-based chemotherapy on the toxicity and pharmacokinetics of oral topotecan and to identify recommended doses for patients with renal impairment or prior platinum-based (PB) chemotherapy.
A multicentre phase I toxicity and pharmacokinetic study of oral topotecan was conducted in patients with advanced solid tumours. Patients were grouped by normal renal function with limited or prior PB chemotherapy or impaired renal function (mild [creatinine clearance (CLcr)  = 50-79 ml min(-1) ], moderate [CLcr  = 30-49 ml min(-1) ], severe [CLcr <30 ml min(-1) ]).
Fifty-nine patients were evaluable. Topotecan lactone and total topotecan area under the concentration-time curve (AUC) was significantly increased in patients with moderate and severe renal impairment (109% and 174%, respectively, topotecan lactone and 148% and 298%, respectively, total topotecan). Asian patients (23 in total) had higher AUCs than non-Asian patients with the same degree of renal impairment. Thirteen dose-limiting toxicities (DLTs) were observed, which were mostly haematological. The maximum tolerated dose (MTD) was 2.3 mg m(-2) day(-1) , given on days 1 to 5 in a 21 day cycle, for patients with prior PB chemotherapy or mild renal impairment, and 1.2 mg m(-2) day(-1) for patients with moderate renal impairment (suggested dose 1.9 mg m(-2) day(-1) for non-Asians). Due to incomplete enrolment of patients with severe renal impairment, the MTD was determined as ≥ 0.6 mg m(-2) day(-1) in this cohort.
Oral topotecan dose adjustments are not required in patients with prior PB chemotherapy or mildly impaired renal function, but reduced doses are required for patients with moderate or severe renal impairment.
© 2015 The British Pharmacological Society.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Non-clinical safety evaluation of single and repeated intramuscular administrations of MAGE-A3 Cancer Immunotherapeutic in rabbits and cynomolgus monkeys.

The MAGE-A3 recombinant protein combined with AS15 immunostimulant (MAGE-A3 Cancer Immunotherapeutic) is under development by GlaxoSmithKline for the treatment of lung cancer and melanoma. We performed non-clinical safety studies evaluating potential local and systemic toxic effects induced by MAGE-A3 Cancer Immunotherapeutic in rabbits (study 1) and cynomolgus monkeys (study 2). Animals were allocated to two groups to receive a single (rabbits) or 25 repeated (every 2 weeks) injections (monkeys) of MAGE-A3 Cancer Immunotherapeutic (treatment groups) or saline (control groups). All rabbits were sacrificed 3 days post-injection and monkeys 3 days following last injection (3/5 per gender per group) or after a 3-month treatment-free period (2/5 per gender per group). Local and systemic reactions and MAGE-A3-specific immune responses (monkeys) were assessed. Macroscopic and microscopic (for rabbits, injection site only) post-mortem examinations were performed on all animals. No systemic toxicity or unscheduled mortalities were recorded. Single (rabbits) and repeated (monkeys; up to four times at the same site) injections were well tolerated. Following five to seven repeated injections, limb circumferences increased up to 26% (5 h post-injection), but returned to normal after 1-8 days. Three days after the last injection, enlargements of iliac, popliteal, axillary and inguinal lymph nodes, and increased incidence or severity of mononuclear inflammatory cell infiltrates was observed in injected muscles of treated monkeys. No treatment-related macroscopic findings were recorded after the treatment-free period. MAGE-A3-specific antibody and T-cell responses were raised in all treated monkeys, confirming test item exposure. Single or repeated intramuscular injections of MAGE-A3 Cancer Immunotherapeutic were well tolerated in rabbits and monkeys.
Copyright © 2014 GlaxoSmithKline Vaccines. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!