On April 25, 2016 TESARO, Inc. (NASDAQ:TSRO), an oncology-focused biopharmaceutical company, reported the submission of an Investigational New Drug (IND) Application for TSR-022 to the U.S. Food and Drug Administration (Press release, TESARO, APR 25, 2016, View Source [SID:1234511378]). Schedule your 30 min Free 1stOncology Demo! TSR-022 is a monoclonal antibody drug candidate targeting TIM-3.
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
"TSR-022 is poised to be the second antibody candidate from our immuno-oncology portfolio to begin clinical studies," said Mary Lynne Hedley, Ph.D., President and COO of TESARO. "Following clearance of the IND, we plan to begin a Phase 1 study in mid-2016."
About TSR-022
TSR-022 is a monoclonal antibody candidate targeting TIM-3 and was developed as part of a collaboration between TESARO and AnaptysBio, Inc. This collaboration was initiated in March of 2014, and is focused on the development of monospecific antibody drug candidates targeting PD-1 (TSR-042), TIM-3 (TSR-022), and LAG-3, and bi-specific antibody drug candidates targeting PD-1/TIM-3 and PD-1/LAG-3, in addition to a novel bispecific antibody candidate designed to target undisclosed targets.
Author: [email protected]
Celator® Pharmaceuticals Announces Positive Results Demonstrating Reduced Healthcare Resource Use with VYXEOSTM Compared to Standard Treatment for Acute Myeloid Leukemia (AML)
On April 25, 2016 Celator Pharmaceuticals, Inc. (Nasdaq: CPXX) reported that patients treated in a Phase 2 clinical study with VYXEOS (cytarabine: daunorubicin) Liposome for Injection (also known as CPX-351) with newly diagnosed AML demonstrated reduced healthcare resource use compared to conventional chemotherapy known as 7+3 (Press release, Celator Pharmaceuticals, APR 25, 2016, View Source [SID:1234511374]). Schedule your 30 min Free 1stOncology Demo! These results were presented at the AMCP Managed Care & Specialty Pharmacy Annual Meeting in San Francisco, CA, April 19-22, 2016.
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
The presentation, titled "VYXEOS (CPX-351) increases event-free survival and time spent out of the hospital in acute myeloid leukemia patients, compared with 7+3 standard of care," was based on data from a clinical study directed by Jeffrey E. Lancet, M.D., senior member and chief of the Leukemia/Myelodysplasia Program at Moffitt Cancer Center. Researchers evaluated treatment details and healthcare resource use in the context of clinical outcomes, such as treatment response and event-free survival (EFS).
VYXEOS treated patients had;
a longer EFS, with a median of 197 days compared to 60 days with 7+3,
a slightly longer time in the hospital, median of 38 days compared to 35 days. The majority of patients on the VYEXOS arm with hospital stays > 60 days also experienced a response (75%) with many having one or more risk factors,
a higher ratio of median EFS days to median hospital days, with a ratio of 5.2 compared to 1.7, which means the time spent out of the hospital was longer for the patients treated with VYXEOS,
fewer hospital admissions, median of 1 admission with VYXEOS compared to 2 admissions with 7+3,
a higher rate of remission after one induction cycle (42/56 vs. 15/21; p=0.03), and
received consolidation treatment more frequently as outpatients (15/37 vs. 2/15; p=0.02).
High risk, including secondary, AML patients treated with VYXEOS also had longer EFS and a favorable ratio of EFS days to hospital days.
"This is the first time we have evaluated the impact of VYXEOS on hospital resource use in relation to its established clinical benefit," said Dr. Lancet. "Although, we did see longer hospital stays in VYXEOS treated patients, some of those costs are clearly offset by fewer hospital admissions and outpatient consolidation treatments in this group. This study suggests significant value that VYXEOS could provide for patients, providers and payers over the course of the disease."
The poster will be available on Celator’s website (www.celatorpharma.com).
Bristol-Myers Squibb’s Opdivo® (nivolumab) Receives Breakthrough Therapy Designation from U.S. Food and Drug Administration for Previously Treated Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck
On April 25, 2016 Bristol-Myers Squibb Company (NYSE: BMY) reported that the U.S. Food and Drug Administration (FDA) has granted Breakthrough Therapy Designation to Opdivo for the potential indication of recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) after platinum based therapy (Press release, Bristol-Myers Squibb, APR 25, 2016, View Source [SID:1234511373]). Schedule your 30 min Free 1stOncology Demo! The Breakthrough Therapy Designation is an FDA program intended to expedite the development and review of medicines with early signals of potential clinical benefit in serious diseases to help ensure patients have access to new therapies as soon as possible.
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
The designation is based on results of CheckMate -141, a Phase 3, open-label, randomized trial evaluating Opdivo versus investigator’s choice of therapy in patients with recurrent or metastatic SCCHN with tumor progression within six months of platinum therapies in the adjuvant, primary, recurrent or metastatic setting. This trial was stopped early in January 2016 because an assessment conducted by the independent Data Monitoring Committee (DMC) concluded that the study met its primary endpoint of overall survival.
Jean Viallet, M.D., Global Clinical Research Lead, Oncology, Bristol-Myers Squibb, commented, "The Breakthrough Therapy Designation for Opdivo in advanced squamous cell carcinoma of the head and neck underscores the immediate need for new treatment approaches for this devastating disease, and reflects our commitment to advancing Immuno-Oncology research with the goal of addressing hard-to-treat cancers and changing survival expectations for patients."
According to the FDA, the criteria for Breakthrough Therapy Designation requires preliminary clinical evidence that demonstrates the medicine may have substantial improvement on at least one clinically significant endpoint over available therapy. This is the fifth Breakthrough Therapy Designation granted for Opdivo by the FDA, with previous Breakthrough Therapy Designation indications including patients with Hodgkin lymphoma after failure of autologous stem cell transplant and brentuximab, previously treated advanced melanoma, previously treated non-squamous non-small cell lung cancer, and advanced or metastatic renal cell carcinoma.
About Head & Neck Cancer
Head and neck cancer is the seventh most common cancer globally, with an estimated 400,000 to 600,000 new cases per year and 223,000 to 300,000 deaths per year. The five-year survival rate is reported as less than 4% for metastatic Stage IV disease. Squamous cell carcinoma of the head and neck (SCCHN) accounts for approximately 90% of all head and neck cancers with global incidence expected to increase by 17% between 2012 and 2022. Risk factors for SCCHN include tobacco and alcohol consumption, and the increasing role of Human Papilloma Virus (HPV) infection leading to rapid increase in oropharyngeal SCCHN in Europe and North America. Quality of life is often impacted for SCCHN patients, as physiological function (breathing, swallowing, eating, drinking), personal characteristics (appearance, speaking, voice), sensory function (taste, smell, hearing), and psychological/social function can be affected.
Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research
At Bristol-Myers Squibb, we have a vision for the future of cancer care that is focused on Immuno-Oncology, now considered a major treatment choice alongside surgery, radiation, chemotherapy and targeted therapies for certain types of cancer.
We have a comprehensive clinical portfolio of investigational and approved Immuno-Oncology agents, many of which were discovered and developed by our scientists. Our ongoing Immuno-Oncology clinical program is looking at broad patient populations, across multiple solid tumors and hematologic malignancies, and lines of therapy and histologies, with the intent of powering our trials for overall survival and other important measures like durability of response. We pioneered the research leading to the first regulatory approval for the combination of two Immuno-Oncology agents, and continue to study the role of combinations in cancer.
We are also investigating other immune system pathways in the treatment of cancer including CTLA-4, CD-137, KIR, SLAMF7, PD-1, GITR, CSF1R, IDO, and LAG-3. These pathways may lead to potential new treatment options – in combination or monotherapy – to help patients fight different types of cancers.
Our collaboration with academia, as well as small and large biotech companies, to research the potential of Immuno-Oncology and non-Immuno-Oncology combinations, helps achieve our goal of providing new treatment options in clinical practice.
At Bristol-Myers Squibb, we are committed to changing survival expectations in hard-to-treat cancers and the way patients live with cancer.
About Opdivo
Cancer cells may exploit "regulatory" pathways, such as checkpoint pathways, to hide from the immune system and shield the tumor from immune attack. Opdivo is a PD-1 immune checkpoint inhibitor that binds to the checkpoint receptor PD-1 expressed on activated T-cells, and blocks the binding of PD-L1 and PD-L2, preventing the PD-1 pathway’s suppressive signaling on the immune system, including the interference with an anti-tumor immune response.
Opdivo’s broad global development program is based on Bristol-Myers Squibb’s understanding of the biology behind Immuno-Oncology. Our company is at the forefront of researching the potential of Immuno-Oncology to extend survival in hard-to-treat cancers. This scientific expertise serves as the basis for the Opdivo development program, which includes a broad range of Phase 3 clinical trials evaluating overall survival as the primary endpoint across a variety of tumor types. The Opdivo trials have also contributed toward the clinical and scientific understanding of the role of biomarkers and how patients may benefit from Opdivo across the continuum of PD-L1 expression. To date, the Opdivo clinical development program has enrolled more than 18,000 patients.
Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world in July 2014, and currently has regulatory approval in 50 countries including the United States, Japan, and in the European Union.
U.S. FDA APPROVED INDICATIONS
OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.
OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.
OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.
IMPORTANT SAFETY INFORMATION
Immune-Mediated Pneumonitis
Immune-mediated pneumonitis, including fatal cases, occurred with OPDIVO treatment. Across the clinical trial experience with solid tumors, fatal immune-mediated pneumonitis occurred with OPDIVO. Monitor patients for signs with radiographic imaging and symptoms of pneumonitis. Administer corticosteroids for Grade 2 or greater pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In Checkmate 037, 066, and 067, immune-mediated pneumonitis occurred in 1.8% (14/787) of patients receiving OPDIVO: Grade 3 (n=2) and Grade 2 (n=12). In Checkmate 057, immune-mediated pneumonitis, including interstitial lung disease, occurred in 3.4% (10/287) of patients: Grade 3 (n=5), Grade 2 (n=2), and Grade 1 (n=3). In Checkmate 025, pneumonitis, including interstitial lung disease, occurred in 5% (21/406) of patients receiving OPDIVO and 18% (73/397) of patients receiving everolimus. Immune-mediated pneumonitis occurred in 4.4% (18/406) of patients receiving OPDIVO: Grade 4 (n=1), Grade 3 (n=4), Grade 2 (n=12), and Grade 1 (n=1).
Immune-Mediated Colitis
Immune-mediated colitis can occur with OPDIVO treatment. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. As a single agent, withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon restarting OPDIVO. In Checkmate 037, 066, and 067, diarrhea or colitis occurred in 31% (242/787) of patients receiving OPDIVO. Immune-mediated colitis occurred in 4.1% (32/787) of patients: Grade 3 (n=20), Grade 2 (n=10), and Grade 1 (n=2). In Checkmate 057, diarrhea or colitis occurred in 17% (50/287) of patients receiving OPDIVO. Immune-mediated colitis occurred in 2.4% (7/287) of patients: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=2). In Checkmate 025, diarrhea or colitis occurred in 25% (100/406) of patients receiving OPDIVO and 32% (126/397) of patients receiving everolimus. Immune-mediated diarrhea or colitis occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 3 (n=5), Grade 2 (n=7), and Grade 1 (n=1).
Immune-Mediated Hepatitis
Immune-mediated hepatitis can occur with OPDIVO treatment. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune-mediated hepatitis. In Checkmate 037, 066, and 067, immune-mediated hepatitis occurred in 2.3% (18/787) of patients receiving OPDIVO: Grade 4 (n=3), Grade 3 (n=11), and Grade 2 (n=4). In Checkmate 057, one patient (0.3%) developed immune-mediated hepatitis. In Checkmate 025, there was an increased incidence of liver test abnormalities compared to baseline in AST (33% vs 39%), alkaline phosphatase (32% vs 32%), ALT (22% vs 31%), and total bilirubin (9% vs 3.5%) in the OPDIVO and everolimus arms, respectively. Immune-mediated hepatitis requiring systemic immunosuppression occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=5) and Grade 2 (n=1).
Immune-Mediated Endocrinopathies
Hypophysitis, adrenal insufficiency, thyroid disorders, and type 1 diabetes mellitus can occur with OPDIVO treatment. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency during and after treatment, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Administer insulin for type 1 diabetes. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.
In Checkmate 037, 066, and 067, hypophysitis occurred in 0.9% (7/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=2). In Checkmate 025, hypophysitis occurred in 0.5% (2/406) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1). In Checkmate 037, 066, and 067, adrenal insufficiency occurred in 1% (8/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=5), and Grade 1 (n=1). In Checkmate 057, 0.3% (1/287) of OPDIVO-treated patients developed adrenal insufficiency. In Checkmate 025, adrenal insufficiency occurred in 2.0% (8/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=4), and Grade 1 (n=1). In Checkmate 037, 066, and 067, hypothyroidism or thyroiditis occurred in 9% (73/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=37), Grade 1 (n=35). Hyperthyroidism occurred in 4.4% (35/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=12), and Grade 1 (n=22). In Checkmate 057, Grade 1 or 2 hypothyroidism, including thyroiditis, occurred in 7% (20/287) and elevated thyroid stimulating hormone occurred in 17% of patients receiving OPDIVO. Grade 1 or 2 hyperthyroidism occurred in 1.4% (4/287) of patients. In Checkmate 025, thyroid disease occurred in 11% (43/406) of patients receiving OPDIVO, including one Grade 3 event, and in 3.0% (12/397) of patients receiving everolimus. Hypothyroidism/thyroiditis occurred in 8% (33/406) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=17), and Grade 1 (n=14). Hyperthyroidism occurred in 2.5% (10/406) of patients receiving OPDIVO: Grade 2 (n=5) and Grade 1 (n=5). In Checkmate 037, 066, and 067, diabetes mellitus or diabetic ketoacidosis occurred in 0.8% (6/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=1). In Checkmate 025, hyperglycemic adverse events occurred in 9% (37/406) patients. Diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=1).
Immune-Mediated Nephritis and Renal Dysfunction
Immune-mediated nephritis can occur with OPDIVO treatment. Monitor patients for elevated serum creatinine prior to and periodically during treatment. For Grade 2 or 3 increased serum creatinine, withhold and administer corticosteroids; if worsening or no improvement occurs, permanently discontinue. Administer corticosteroids for Grade 4 serum creatinine elevation and permanently discontinue. In Checkmate 037, 066, and 067, nephritis and renal dysfunction of any grade occurred in 5% (40/787) of patients receiving OPDIVO. Immune-mediated nephritis and renal dysfunction occurred in 0.8% (6/787) of patients: Grade 3 (n=4) and Grade 2 (n=2). In Checkmate 057, Grade 2 immune-mediated renal dysfunction occurred in 0.3% (1/287) of patients receiving OPDIVO. In Checkmate 025, renal injury occurred in 7% (27/406) of patients receiving OPDIVO and 3.0% (12/397) of patients receiving everolimus. Immune-mediated nephritis and renal dysfunction occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 5 (n=1), Grade 4 (n=1), Grade 3 (n=5), and Grade 2 (n=6).
Immune-Mediated Rash
Immune-mediated rash can occur with OPDIVO treatment. Severe rash (including rare cases of fatal toxic epidermal necrolysis) occurred in the clinical program of OPDIVO. Monitor patients for rash. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4. In Checkmate 037, 066, and 067, immune-mediated rash occurred in 9% (72/787) of patients receiving OPDIVO: Grade 3 (n=7), Grade 2 (n=15), and Grade 1 (n=50). In Checkmate 057, immune-mediated rash occurred in 6% (17/287) of patients receiving OPDIVO including four Grade 3 cases. In Checkmate 025, rash occurred in 28% (112/406) of patients receiving OPDIVO and 36% (143/397) of patients receiving everolimus. Immune-mediated rash, defined as a rash treated with systemic or topical corticosteroids, occurred in 7% (30/406) of patients receiving OPDIVO: Grade 3 (n=4), Grade 2 (n=7), and Grade 1 (n=19).
Immune-Mediated Encephalitis
Immune-mediated encephalitis can occur with OPDIVO treatment. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In Checkmate 057, fatal limbic encephalitis occurred in one patient (0.3%) receiving OPDIVO.
Other Immune-Mediated Adverse Reactions
Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. In < 1.0% of patients receiving OPDIVO, the following clinically significant, immune-mediated adverse reactions occurred: uveitis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, and sarcoidosis. Across clinical trials of OPDIVO as a single agent administered at doses of 3 mg/kg and 10 mg/kg, additional clinically significant, immune-mediated adverse reactions were identified: motor dysfunction, vasculitis, and myasthenic syndrome.
Infusion Reactions
Severe infusion reactions have been reported in <1.0% of patients in clinical trials of OPDIVO. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In Checkmate 037, 066, and 067, Grade 2 infusion related reactions occurred in 2.7% (21/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=8), and Grade 1 (n=11). In Checkmate 057, Grade 2 infusion reactions requiring corticosteroids occurred in 1.0% (3/287) of patients receiving OPDIVO. In Checkmate 025, hypersensitivity/infusion-related reactions occurred in 6% (25/406) of patients receiving OPDIVO and 1.0% (4/397) of patients receiving everolimus.
Embryo-fetal Toxicity
Based on its mechanism of action, OPDIVO can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- containing regimen and for at least 5 months after the last dose of OPDIVO.
Lactation
It is not known whether OPDIVO is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment.
Serious Adverse Reactions
In Checkmate 067, serious adverse reactions (37%), adverse reactions leading to permanent discontinuation (14%) or to dosing delays (28%), and Grade 3 or 4 adverse reactions (44%) occurred in the OPDIVO arm. The most frequent (≥10%) serious adverse reactions in the OPDIVO arm were diarrhea (2.6%), colitis (1.6%), and pyrexia (0.6%). In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 057, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pulmonary embolism, dyspnea, pleural effusion, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia.
Common Adverse Reactions
In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO vs dacarbazine were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 057, the most common adverse reactions (≥20%) reported with OPDIVO were fatigue (49%), musculoskeletal pain (36%), cough (30%), decreased appetite (29%), and constipation (23%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO vs everolimus were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%).
The Evolution of Nephrectomy and Patient Characteristics in Metastatic Renal Cell Carcinoma Patients Enrolled Into First-Line Tyrosine Kinase Inhibitors Clinical Trials.
The objective of this study was to compare rates of nephrectomy (Nx) in, and characteristics of, patients with metastatic renal cell carcinoma (mRCC) enrolled in prospective clinical trials of tyrosine kinase inhibitors (TKIs) that were completed through (Group 1) versus after (Group 2) 2007.
Searching online databases, we retrospectively identified phase I to III trials with ≥ 15 patients with mRCC treated with first-line TKIs, alone or in combination with other agent(s).
Of 70 trials identified, 42 were included in the analysis (n = 6074 patients). Compared with Group 1, Group 2 patients had significantly less Nx (85.7% vs. 93.7%; P &lt; .001) and prior cytokine therapy (11.1% vs. 46.8%; P &lt; .001). Group 2 also had significantly fewer patients with good prognostic risk (based on Memorial Sloan-Kettering Cancer Center criteria) or performance status (both P &lt; .001). Group 2 patients had a significantly greater objective response rate than Group 1 patients (intent-to-treat analysis: 28.6% vs. 23.1%, respectively; P &lt; .001), whereas Group 1 patients had significantly more stable disease. Clinical benefit was similar in both groups (P = .157), and the means of median progression-free survival were comparable (8.2 and 9.0 months in Groups 1 and 2, respectively; P = .2528).
Use of Nx in mRCC patients participating in clinical trials has declined in the TKI era. More patients with worse prognostic risk profiles are participating in first-line TKI trials after 2007, but objective response rates are higher. Despite patient characteristics that favor the earlier group, progression-free survival is similar as TKIs have replaced cytokines as first-line therapy.
Copyright © 2016 Elsevier Inc. All rights reserved.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
A Novel Selective Androgen Receptor Modulator (SARM) MK-4541 Exerts Anti-Androgenic Activity in the Prostate Cancer Xenograft R-3327G and Anabolic Activity on Skeletal Muscle Mass &amp; Function in Castrated Mice.
The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT which may provide potent anti-androgenic activity at the prostate yet protective activity on skeletal muscle and behavior in patients.
Copyright © 2016. Published by Elsevier Ltd.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!