On November 11, 2016 Five Prime Therapeutics, Inc. (Nasdaq:FPRX), a clinical-stage biotechnology company focused on discovering and developing innovative immuno-oncology protein therapeutics, reported that a poster featuring preclinical data related to its tetravalent anti-GITR agonist antibody, FPA154, was presented today at the Society for Immunotherapy of Cancer (SITC) (Free SITC Whitepaper) Annual Meeting in National Harbor, Maryland (Press release, Five Prime Therapeutics, NOV 11, 2016, View Source [SID1234516495]). Poster #175 titled, "Novel tetravalent anti-GITR antibody is a potent anti-tumor agent in vivo," is available at View Source
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
"With our lead anti-GITR candidate, FPA154, now in pre-IND enabling studies, we are pleased to highlight our first preclinical data supporting the development and differentiation of this novel, tetravalent antibody," said Luis Borges, Ph.D., Senior Vice President of Research, at Five Prime. "In vitro data demonstrates that our tetravalent antibody has agonistic activity in the absence of Fc-mediated crosslinking. In vivo, the antibody has potent anti-tumor activity in various murine tumor models and it confers long-term anti-tumor immunity. It alters the ratio of Tregs to effector T cells, creating a favorable environment for an effective anti-tumor immune response. These findings suggest the potential for FPA154 to activate T cell immunity against various tumors and we are working to move this program rapidly toward clinical development."
FPA154 has been designed using single-domain antibodies in a tetravalent format, inducing effector T cell stimulation in vitro that is superior to a conventional bivalent antibody format and conferring agonistic activity even in the absence of Fc-mediated crosslinking. The poster features preclinical data provided by a mouse-reactive surrogate molecule that demonstrate potent inhibition of tumor growth in mouse tumor models:
Potent anti-tumor activity following a single dose: A single dose of tetravalent anti-GITR significantly inhibited tumor growth in multiple models including CT26 and MC38. Treatment was capable of inducing complete tumor rejection, and activity was observed at doses as low as 0.08 mg/kg in both models.
Fc-independent activity: Tetravalent anti-GITR antibody retained partial tumor growth inhibition activity even in the absence of Fc-mediated crosslinking or effector function, whereas a conventional bivalent antibody (DTA-1) required Fc function.
Pharmacodynamic responses: Tetravalent anti-GITR antibody treatment reduced the number of T cells in the peripheral blood 3 days post-treatment. In the tumor, Treg and conventional CD4 T cells decreased, but CD8 T cell numbers were maintained. This resulted in a ratio of CD4 and CD8 effector T cells to Treg that created a favorable environment for an effective anti-tumor immune response.
Induction of long-term immunity: Mice that eliminated CT26 tumors in response to tetravalent anti-GITR were resistant to tumor regrowth upon re-challenge with the same tumor, but not to an antigenically-unrelated tumor.