Amgen Presents New Data From Phase 3 XGEVA® (denosumab) Study In Multiple Myeloma Patients At The 16th International Myeloma Workshop

On March 3, 2017 Amgen (NASDAQ:AMGN) reported positive data from the Phase 3 ‘482 study, the largest international multiple myeloma trial ever conducted (Press release, Amgen, MAR 3, 2017, View Source [SID1234517976]). In this study, XGEVA (denosumab) met the primary endpoint, demonstrating non-inferiority to zoledronic acid in delaying the time to first on-study skeletal-related event (SRE) in patients with multiple myeloma (HR=0.98, 95 percent CI: 0.85, 1.14; p=0.01). The median time to first on-study SRE was similar between XGEVA (22.83 months) and zoledronic acid (23.98 months). These data will be presented today during the late-breaking abstract session at the 16th International Myeloma Workshop (IMW) in New Delhi.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Bone complications are devastating for patients with multiple myeloma. Renal function is a constant consideration in the treatment of multiple myeloma patients, often preventing the use of bisphosphonates, the only approved class of agents for prevention of bone complications, underscoring the need for new treatment options," said Noopur Raje, M.D., director, Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston. "The results of this study showed that denosumab may be an effective novel option that is not cleared through the kidneys that may help prevent bone complications in patients with multiple myeloma."

The secondary endpoints of superiority in delaying time to first SRE and delaying time to first-and-subsequent SRE were not met in this study. There was a suggested trend in overall survival (OS) in favor of XGEVA over zoledronic acid (HR=0.90, 95 percent CI: 0.70, 1.16; p=0.41); however, it was not statistically significant. The hazard ratio of XGEVA versus zoledronic acid for progression-free survival (PFS) was 0.82 (95 percent CI: 0.68, 0.99; descriptive p=0.036). The median PFS difference between arms was 10.7 months in favor of XGEVA.

"XGEVA is currently approved for the prevention of bone complications in patients with solid tumors based on superior clinical benefits over zoledronic acid in this setting," said Sean E. Harper, M.D., executive vice president of Research and Development at Amgen. "The results being presented today reinforce that XGEVA’s unique mechanism of action and subcutaneous administration may also offer patients with multiple myeloma a valuable alternative to the current standard of care. Amgen plans to submit these results to regulatory agencies worldwide to support a potential update to the XGEVA label."

Adverse events observed in patients treated with XGEVA were consistent with the known safety profile of XGEVA. The most common adverse events (greater than 25 percent) were diarrhea (33.5 percent XGEVA and 32.4 percent zoledronic acid) and nausea (31.5 percent XGEVA and 30.4 percent zoledronic acid).

Multiple myeloma is the second most common hematologic cancer, and it develops in plasma cells located in the bone marrow microenvironment.1,2 Bone lesions appear in the vast majority of patients with multiple myeloma and weaken the bone.3 Myeloma cells induce RANK ligand (RANKL) expression, a protein essential for the formation, function and survival of osteoclasts, which break down bone. In addition, direct RANKL expression by myeloma cells may enhance osteoclast activity in the bone microenvironment.4 Excessive RANKL can increase the risk of bone complications, including pathologic fractures, radiation therapy or surgery to the bone, and spinal cord compression.5,6

About ‘482 Study (NCT01345019)
The ‘482 study was an international, Phase 3, randomized, double-blind, multicenter trial of XGEVA compared with zoledronic acid in the prevention of bone complications in patients with newly diagnosed multiple myeloma. In the study, a total of 1,718 patients (859 on each arm) were randomized to receive either subcutaneous XGEVA 120 mg and intravenous placebo every four weeks, or intravenous zoledronic acid 4 mg (adjusted for renal function) and subcutaneous placebo every four weeks. The primary endpoint of the study was non-inferiority of XGEVA versus zoledronic acid with respect to time to first on-study SRE (fracture, radiation to bone, surgery to bone or spinal cord compression). Secondary endpoints included superiority of XGEVA versus zoledronic acid with respect to time to first on-study SRE and first-and-subsequent on-study SRE and OS. PFS was an exploratory endpoint. The safety and tolerability of XGEVA were also compared with zoledronic acid.

About Multiple Myeloma and Bone Complications
Multiple myeloma is the second most common hematologic cancer, and it develops in plasma cells located in the bone marrow microenvironment.1,2 It is characterized by a recurring pattern of remission and relapse, with patients eventually becoming refractory to treatment.7 Each year an estimated 114,000 new cases of multiple myeloma are diagnosed worldwide, resulting in more than 80,000 deaths per year.1

Bone lesions are a hallmark of multiple myeloma and often result in bone complications.3,6 Additionally, renal impairment is a common complication of multiple myeloma.8 Approximately 60 percent of all multiple myeloma patients have or will have renal impairment over the course of the disease.8 Current treatment options including zoledronic acid are cleared by the kidneys and associated with renal toxicity.6 Preventing bone complications is a critical aspect of caring for patients with multiple myeloma, because these events can cause significant morbidity.9

About XGEVA (denosumab)
XGEVA targets the RANKL pathway to prevent the formation, function and survival of osteoclasts, which break down bone. XGEVA is indicated for the prevention of SREs in patients with bone metastases from solid tumors and for treatment of adults and skeletally mature adolescents with giant cell tumor of bone that is unresectable or where surgical resection is likely to result in severe morbidity. XGEVA is also indicated in the United States (U.S.) for the treatment of hypercalcemia of malignancy refractory to bisphosphonate therapy. XGEVA is not indicated for the prevention of SREs in patients with multiple myeloma.

U.S. Important Safety Information

Hypocalcemia
Pre-existing hypocalcemia must be corrected prior to initiating therapy with XGEVA. XGEVA can cause severe symptomatic hypocalcemia, and fatal cases have been reported. Monitor calcium levels, especially in the first weeks of initiating therapy, and administer calcium, magnesium, and vitamin D as necessary. Monitor levels more frequently when XGEVA is administered with other drugs that can also lower calcium levels. Advise patients to contact a healthcare professional for symptoms of hypocalcemia.

An increased risk of hypocalcemia has been observed in clinical trials of patients with increasing renal dysfunction, most commonly with severe dysfunction (creatinine clearance less than 30 mL/minute and/or on dialysis), and with inadequate/no calcium supplementation. Monitor calcium levels and calcium and vitamin D intake.

Hypersensitivity
XGEVA is contraindicated in patients with known clinically significant hypersensitivity to XGEVA, including anaphylaxis that has been reported with use of XGEVA. If an anaphylactic or other clinically significant allergic reaction occurs, initiate appropriate therapy and discontinue XGEVA therapy permanently.

Drug Products with Same Active Ingredient
Patients receiving XGEVA should not take Prolia (denosumab).

Osteonecrosis of the Jaw
Osteonecrosis of the jaw (ONJ) has occurred in patients receiving XGEVA, manifesting as jaw pain, osteomyelitis, osteitis, bone erosion, tooth or periodontal infection, toothache, gingival ulceration, or gingival erosion. Persistent pain or slow healing of the mouth or jaw after dental surgery may also be manifestations of ONJ. In clinical trials in patients with osseous metastasis, the incidence of ONJ was higher with longer duration of exposure.

Patients with a history of tooth extraction, poor oral hygiene, or use of a dental appliance are at a greater risk to develop ONJ. Other risk factors for the development of ONJ include immunosuppressive therapy, treatment with angiogenesis inhibitors, systemic corticosteroid, diabetes, and gingival infections.

Perform an oral examination and appropriate preventive dentistry prior to the initiation of XGEVA and periodically during XGEVA therapy. Advise patients regarding oral hygiene practices. Avoid invasive dental procedures during treatment with XGEVA. Consider temporarily interrupting XGEVA therapy if an invasive dental procedure must be performed.

Patients who are suspected of having or who develop ONJ while on XGEVA should receive care by a dentist or an oral surgeon. In these patients, extensive dental surgery to treat ONJ may exacerbate the condition.

Atypical Subtrochanteric and Diaphyseal Femoral Fracture
Atypical femoral fracture has been reported with XGEVA. These fractures can occur anywhere in the femoral shaft from just below the lesser trochanter to above the supracondylar flare and are transverse or short oblique in orientation without evidence of comminution.

Atypical femoral fractures most commonly occur with minimal or no trauma to the affected area. They may be bilateral and many patients report prodromal pain in the affected area, usually presenting as dull, aching thigh pain, weeks to months before a complete fracture occurs. A number of reports note that patients were also receiving treatment with glucocorticoids (e.g. prednisone) at the time of fracture. During XGEVA treatment, patients should be advised to report new or unusual thigh, hip, or groin pain. Patient presenting with an atypical femur fracture should also be assessed for symptoms and signs of fracture in the contralateral limb. Interruption of XGEVA therapy should be considered, pending a risk/benefit assessment, on an individual basis.

Embryo-Fetal Toxicity
XGEVA can cause fetal harm when administered to a pregnant woman. Based on findings in animals, XGEVA is expected to result in adverse reproductive effects. Advise females of reproductive potential to use highly effective contraception during therapy, and for at least five months after the last dose of XGEVA. Apprise the patient of the potential hazard to a fetus if XGEVA is used during pregnancy or if the patient becomes pregnant while patients are exposed to XGEVA.

Adverse Reactions
The most common adverse reactions in patients receiving XGEVA with bone metastasis from solid tumors were fatigue/asthenia, hypophosphatemia, and nausea. The most common serious adverse reaction was dyspnea.

The most common adverse reactions in patients receiving XGEVA for giant cell tumor of bone were arthralgia, headache, nausea, back pain, fatigue, and pain in extremity. The most common serious adverse reactions were osteonecrosis of the jaw and osteomyelitis. The most common adverse reactions resulting in discontinuation of XGEVA were osteonecrosis of the jaw and tooth abscess or tooth infection.

The most common adverse reactions in patients receiving XGEVA for hypercalcemia of malignancy were nausea, dyspnea, decreased appetite, headache, peripheral edema, vomiting, anemia, constipation, and diarrhea.

Denosumab is also marketed as Prolia in other indications.

Please visit www.amgen.com or www.xgeva.com for Full U.S. Prescribing Information.