On February 7, 2024 MAIA Biotechnology, Inc., (NYSE American: MAIA) ("MAIA", the "Company"), a clinical-stage biopharmaceutical company developing targeted immunotherapies for cancer, reported the publication of extensive work describing preclinical studies for lead candidate THIO in small cell lung cancer (SCLC) in the peer-reviewed scientific journal Nature Communications (Press release, MAIA Biotechnology, FEB 7, 2024, View Source [SID1234639926]). The reported findings from the research, conducted in collaboration with the University of Texas Southwestern (UTSW) scientists, led by corresponding author Dr. Esra Akbay, demonstrate the immune-enhancing, metastasis-reducing effects of MAIA’s telomere-targeting agent THIO (6TdG) in several well-characterized in vitro and in vivo models of SCLC.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
"This publication highlights a rather unique dual mechanism of action for THIO as a first-in-clinic telomere-targeted anticancer agent for potential treatment of SCLC," said Sergei M. Gryaznov, PhD., MAIA’s Chief Scientific Officer. "In addition to the direct and potent cancer cell depletion activity, the observed specific interferons stimulation, immune responses-enhancement, and metastasis-reducing effects of THIO provide solid scientific foundation for further advancement of this compound in clinical development."
A prominent characteristic of lung cancer small cells is their reliance on telomerase activity, a key enzyme essential for the continuous proliferation of SCLC. While 85-90% of all human cancers are telomerase positive, SCLCs are nearly all telomerase positive1, suggesting that telomerase targeting may be an effective strategy in the treatment of SCLC.
Key findings in the published paper include:
Human and mouse SCLC lines are sensitive to THIO (6TdG) treatment in vitro and in vivo
THIO decreases cancer initiating cells and diminishes tumor initiation potential in vitro and in vivo
Low doses of THIO are effective in treating metastatic mouse SCLC tumors
THIO activates type-I interferon pathway through cGAS-STING signaling
THIO is highly effective in combination with ionizing radiation treatment regiments
"With few, if any, effective treatments for small cell lung cancer, there is a widespread need for innovative therapeutic strategies. The positive outcomes reported in our publication show THIO’s potential as a new therapeutic approach," said Vlad Vitoc, M.D., MAIA’s Chairman and Chief Executive Officer. "THIO already holds Orphan Drug Designation for SCLC, underscoring the FDA’s recognition of THIO’s potential to improve outcomes for this highly lethal disease. With the positive preclinical and clinical data we have obtained to date for THIO, we have entered the Phase 2 planning stage for a clinical trial of THIO in SCLC along with two other cancers."
Orphan Products Development grants orphan designation status to drugs and biologics that are intended for the treatment, diagnosis or prevention of rare diseases, or conditions that affect fewer than 200,000 people in the U.S. Orphan Drug Designation provides certain benefits, including financial incentives, to support clinical development and the potential for up to seven years of market exclusivity for the drug for the designated orphan indication in the U.S. if the drug is ultimately approved for its designated indication.
About the Publication
Nature Communications, volume 15, article number: 672 (2024), "A telomere-targeting drug depletes cancer initiating cells and promotes anti-tumor immunity in small cell lung cancer," published 22 January 2024. Co-author disclosures included in manuscript.
About Small Cell Lung Cancer
Small cell lung cancer (SCLC) accounts for 13% of lung cancers. As the deadliest of all lung cancers, SCLC is one of the leading causes of cancer-related mortality in United States with 30,000 deaths annually. It is less common than non-small cell lung cancer (NSCLC), but is more aggressive and rapidly spreads (metastasizes) throughout the body.
About THIO
THIO (6-thio-dG or 6-thio-2’-deoxyguanosine) is a first-in-class investigational telomere-targeting agent currently in clinical development to evaluate its activity in Non-Small Cell Lung Cancer (NSCLC). Telomeres, along with the enzyme telomerase, play a fundamental role in the survival of cancer cells and their resistance to current therapies. The modified nucleoside 6-thio-2’-deoxyguanosine (THIO) induces telomerase-dependent telomeric DNA modification, DNA damage responses, and selective cancer cell death. THIO-damaged telomeric fragments accumulate in cytosolic micronuclei activating both innate (cGAS/STING) and adaptive (T-cell) immune responses. The sequential treatment with THIO followed by PD-(L)1 inhibitors resulted in profound and persistent tumor regression in advanced, in vivo cancer models by induction of cancer type–specific immune memory. THIO is presently developed as a second or later line of treatment for NSCLC for patients that have progressed beyond the standard-of-care regimen of existing checkpoint inhibitors.