On November 4, 2021 Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for patients with cancer, reported that three oral and five poster presentations for the Company’s induced pluripotent stem cell (iPSC) product platform were accepted for presentation at the 63rd American Society of Hematology (ASH) (Free ASH Whitepaper) Annual Meeting and Exposition being held from December 11-14, 2021 (Press release, Fate Therapeutics, NOV 4, 2021, View Source [SID1234594366]). The Company also plans to host a virtual investor event on Tuesday, December 14.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
The oral presentations will include updated Phase 1 clinical data of FT596, the Company’s universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master iPSC line engineered with three anti-tumor functional modalities: a proprietary chimeric antigen receptor (CAR) optimized for NK cell biology that targets B-cell antigen CD19; a novel high-affinity, non-cleavable CD16 (hnCD16) Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies; and an IL-15 receptor fusion (IL-15RF) that augments NK cell activity. The Company previously reported interim Phase 1 clinical data of FT596 as monotherapy and in combination with rituximab for the treatment of relapsed / refractory B-cell lymphoma. As of the data cutoff date of June 25, 2021, in the second and third dose cohorts (90 million cells and 300 million cells, respectively) of the single-dose monotherapy and combination regimens, 10 of 14 patients (71%) achieved an objective response, including seven patients (50%) that achieved a complete response, on Day 29 as assessed by PET-CT scan per Lugano 2014 criteria. Treatment with FT596 was well tolerated, with two reported low-grade adverse events (one Grade 1, one Grade 2) of cytokine release syndrome (CRS) and no reported adverse events of immune effector cell-associated neurotoxicity syndrome (ICANS) or graft-versus-host disease (GVHD).
The poster presentations will include updated Phase 1 clinical data of FT516, the Company’s universal, off-the-shelf NK cell cancer immunotherapy derived from a clonal master iPSC line engineered to express a novel hnCD16 Fc receptor. The Company previously reported interim Phase 1 clinical data of FT516 in combination with rituximab for the treatment of relapsed / refractory B-cell lymphoma. As of the data cutoff date of July 7, 2021, in the second and third multi-dose cohorts (90 million cells per dose and 300 million cells per dose, respectively), eight of 11 patients (73%) achieved an objective response, including six patients (55%) that achieved a complete response, on Day 29 of the second FT516 treatment cycle as assessed by PET-CT scan per Lugano 2014 criteria. Five of the 11 patients (45%) maintained their response without further therapeutic intervention, including four patients that remained in complete response (4.6-9.5 months) and one patient that remained in partial response (6.1 months). The multi-dose, multi-cycle treatment regimen was well tolerated, and no adverse events of CRS, ICANS, or GVHD were reported.
Additional presentations will include an oral presentation describing preclinical and clinical translational data of FT596; a poster presentation describing the making of the clonal engineered master iPSC line for FT819, which is created from a single iPSC that has a novel CD19-targeted 1XX CAR construct integrated into the T-cell receptor alpha constant (TRAC) locus; a poster presentation describing the preclinical activity of a novel multiplexed-engineered, dual CAR NK cell product candidate targeting B-cell maturation antigen (BCMA) and the alpha-3 domain of MICA/B in models of multiple myeloma; and a poster presentation describing the preclinical activity of multiplexed-engineered, iPSC-derived T cells incorporating three distinct tumor-targeting modalities (CAR, TCR and hnCD16).
Oral Presentations
Safety and Efficacy of FT596, a First-in-Class, Multi-Antigen Targeted, Off-the-Shelf, iPSC-Derived CD19 CAR NK Cell Therapy in Relapsed / Refractory B-Cell Lymphoma
Publication Number: 823
Session Name: 704. Cellular Immunotherapies: Expanding Targets and Cellular Sources for Immunotherapies
Presentation Date / Time: Monday, December 13, 2021; 4:30 PM
Room: Georgia World Congress Center, Georgia Ballroom 1-3
Off-the-Shelf, Multiplexed-Engineered iPSC-Derived NK Cells Mediate Potent Multi-Antigen Targeting of B-Cell Malignancies with Reduced Cytotoxicity Against Healthy B Cells
Publication Number: 407
Session Name: 703. Cellular Immunotherapies: Basic and Translational II
Presentation Date / Time: Sunday, December 12, 2021; 10:30 AM
Room: Georgia World Congress Center, B405-B407
Arming of iPSC-Derived NK Cells Expressing a Novel CD64 Fusion Receptor with Therapeutic Antibodies Represents a Novel Off-the-Shelf, Antigen-Targeting Strategy for Cancer
Publication Number: 406
Session Name: 703. Cellular Immunotherapies: Basic and Translational II
Presentation Date / Time: Sunday, December 12, 2021; 10:15 AM
Room: Georgia World Congress Center, B405-B407
Poster Presentations
Phase I Study of FT516, an Off-the-Shelf, iPSC-Derived NK Cell Therapy, in Combination with Rituximab in Patients with Relapsed / Refractory B-Cell Lymphoma
Publication Number: 3873
Session Name: 704. Cellular Immunotherapies: Clinical: Poster III
Presentation Date / Time: Monday, December 13, 2021; 6:00 PM
Room: Georgia World Congress Center, Hall B5
Clinical Manufacture of FT819: Use of a Clonal Multiplexed-Engineered Master Induced Pluripotent Stem Cell Line to Mass Produce Off-the-Shelf CAR T-Cell Therapy
Publication Number: 1766
Session Name: 711. Cell Collection and Processing: Poster I
Presentation Date / Time: Saturday, December 11, 2021; 5:30 PM
Room: Georgia World Congress Center, Hall B5
Combination of Three Unique Anti-Tumor Modalities Engineered into iPSC-Derived T Cells Demonstrate a Synergistic Effect in Overcoming Tumor Heterogeneity and Cancer Escape
Publication Number: 2793
Session Name: 703. Cellular Immunotherapies: Basic and Translational: Poster II
Presentation Date / Time: Sunday, December 12, 2021; 6:00 PM
Room: Georgia World Congress Center, Hall B5
Dual Chimeric Antigen Receptor Approach Combining Novel Tumor Targeting Strategies Circumvents Antigen Escape in Multiple Myeloma
Publication Number: 1718
Session Name: 703. Cellular Immunotherapies: Basic and Translational: Poster I
Presentation Date / Time: Saturday, December 11, 2021; 5:30 PM
Room: Georgia World Congress Center, Hall B5
Off-the-Shelf, iPSC-Derived CAR NK Cells Multiplexed-Engineered for the Avoidance of Allogeneic Host Immune Cell Rejection
Publication Number: 2795
Session Name: 703. Cellular Immunotherapies: Basic and Translational: Poster II
Presentation Date / Time: Sunday, December 12, 2021; 6:00 PM
Room: Georgia World Congress Center, Hall B5
The accepted abstracts are available online through the ASH (Free ASH Whitepaper) conference website (www.hematology.org/Annual-Meeting/Abstracts/).
About Fate Therapeutics’ iPSC Product Platform
The Company’s proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Company’s first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Company’s platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics’ iPSC product platform is supported by an intellectual property portfolio of over 350 issued patents and 150 pending patent applications.
About FT516
FT516 is an investigational, universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line engineered to express a novel high-affinity 158V, non-cleavable CD16 (hnCD16) Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies. CD16 mediates antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells. ADCC is dependent on NK cells maintaining stable and effective expression of CD16, which has been shown to undergo considerable down-regulation in cancer patients. In addition, CD16 occurs in two variants, 158V or 158F, that elicit high or low binding affinity, respectively, to the Fc domain of IgG1 antibodies. Numerous clinical studies with FDA-approved tumor-targeting antibodies, including rituximab, trastuzumab and cetuximab, have demonstrated that patients homozygous for the 158V variant, which is present in only about 15% of patients, have improved clinical outcomes. FT516 is being investigated in a multi-dose Phase 1 clinical trial as a monotherapy for the treatment of acute myeloid leukemia and in combination with CD20-targeted monoclonal antibodies for the treatment of advanced B-cell lymphoma (NCT04023071). Additionally, FT516 is being investigated in a multi-dose Phase 1 clinical trial in combination with avelumab for the treatment of advanced solid tumors resistant to anti-PDL1 checkpoint inhibitor therapy (NCT04551885).
About FT596
FT596 is an investigational, universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line engineered with three anti-tumor functional modalities: a proprietary chimeric antigen receptor (CAR) optimized for NK cell biology that targets B-cell antigen CD19; a novel high-affinity 158V, non-cleavable CD16 (hnCD16) Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies; and an IL-15 receptor fusion (IL-15RF) that augments NK cell activity. In preclinical studies of FT596, the Company has demonstrated that dual activation of the CAR19 and hnCD16 targeting receptors enhances cytotoxic activity, indicating that multi-antigen engagement may elicit a deeper and more durable response. Additionally, in a humanized mouse model of lymphoma, FT596 in combination with the anti-CD20 monoclonal antibody rituximab showed enhanced killing of tumor cells in vivo as compared to rituximab alone. FT596 is being investigated in a multi-center Phase 1 clinical trial for the treatment of relapsed / refractory B-cell lymphoma as a monotherapy and in combination with rituximab, and for the treatment of relapsed / refractory chronic lymphocytic leukemia (CLL) as a monotherapy and in combination with obinutuzumab (NCT04245722).
About FT819
FT819 is an investigational, universal, off-the-shelf, T-cell receptor (TCR)-less CD19 chimeric antigen receptor (CAR) T-cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line, which is engineered with the following features designed to improve the safety and efficacy of CAR19 T-cell therapy: a novel 1XX CAR signaling domain, which has been shown to extend T-cell effector function without eliciting exhaustion; integration of the CAR19 transgene directly into the T-cell receptor alpha constant (TRAC) locus, which has been shown to promote uniform CAR19 expression and enhanced T-cell potency; and complete bi-allelic disruption of TCR expression for the prevention of graft-versus-host disease. FT819 demonstrated antigen-specific cytolytic activity in vitro against CD19-expressing leukemia and lymphoma cell lines comparable to that of primary CAR T cells, and persisted and maintained tumor clearance in the bone marrow in an in vivo disseminated xenograft model of lymphoblastic leukemia (Valamehr et al. 2020). FT819 is being investigated in a multi-center Phase 1 clinical trial for the treatment of relapsed / refractory B-cell malignancies, including B-cell lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia (NCT04629729).