On April 8, 2021 GT Biopharma, Inc. (NASDAQ: GTBP), a clinical stage immuno-oncology company focused on developing innovative therapeutics based on the Company’s proprietary NK cell engager (TriKE) protein biologic technology platform, reported the enrollment of Patient 10 in its GTB-3550 TriKE first-in-human Phase I/II clinical trial for the treatment of high-risk myelodysplastic syndromes (MDS) and refractory/relapsed acute myeloid leukemia (AML) (Press release, GT Biopharma, APR 8, 2021, View Source [SID1234577763]). Patient 10 will be dosed at 100mcg/kg/day.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
Highlights from the first nine patients treated with GTB-3550 TriKE include:
Up to 63.7% Reduction in Bone Marrow Blast Levels
Restores Patient’s Endogenous NK Cell Function, Proliferation and Immune Surveillance
No Progenitor-derived or Autologous/Allogenic Cell Therapy Required
No Cytokine Release Syndrome Observed
3 out of the Last 5 Patients Treated (25mcg/kg/day to 100mcg/kg/day) Respond
"We are pleased with the continued clinical performance of our lead TriKE product candidate, and in reaching this important patient enrollment milestone," said Anthony J. Cataldo, GT Biopharma’s Chairman and Chief Executive Officer. "The data from the first nine patients treated with GTB-3550 indicates significant bone marrow blast level reductions in AML and MDS patients without the need for expensive progenitor-derived or autologous/allogenic cell therapies."
About High-Risk Myelodysplastic Syndromes
MDS is a rare form of bone marrow-related cancer caused by irregular blood cell production within the bone marrow. As a result of this irregular production, MDS patients do not have sufficient normal red blood cells, white blood cells and/or platelets in circulation. High-risk MDS is associated with poor prognosis, diminished quality of life, and a higher chance of transformation to acute myeloid leukemia. Approximately 40% of patients with High-Risk MDS transform to AML, another aggressive cancer with poor outcomes.
About Acute Myeloid Leukemia
Acute myeloid leukemia is a type of cancer in which the bone marrow makes abnormal myeloblasts (a type of white blood cell), red blood cells, or platelets. According to the National Cancer Institute (NCI), the five-year survival rate is about 35% in people under 60 years old, and 10% in people over 60 years old. Older people whose health is too poor for intensive chemotherapy have a typical survival of five to ten months. AML accounts for roughly 1.8% of cancer deaths in the United States.
About GTB-3550 TriKE
GTB-3550 is the Company’s first TriKE product candidate being initially developed for the treatment of AML and MDS, and other CD33+ hematologic cancers. GTB-3550 is a single-chain, tri-specific scFv recombinant fusion protein conjugate composed of the variable regions of the heavy and light chains of anti-CD16 and anti-CD33 antibodies and a modified form of Interleukin 15 (IL-15). The natural killer (NK) cell-stimulating cytokine human IL-15 portion of the molecule provides a self-sustaining signal that activates NK cells and enhances their ability to kill. We intend to study GTB-3550 in CD33 positive leukemias such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and other CD33+ hematopoietic malignancies.
About GTB-3550 TriKE Clinical Trial
Patients with CD33+ malignancies (primary induction failure or relapsed AML with failure of one reinduction attempt or high-risk MDS progressed on two lines of therapy) age 18 and older are eligible (NCT03214666). The primary endpoint is to identify the maximum tolerated dose (MTD) of GTB-3550 TriKE. Correlative objectives include the number, phenotype, activation status and function of NK cells and T cells.