PV-10® Abstract Previously Accepted for Presentation at Terminated American Association for Cancer Research (AACR) Annual Meeting 2020

On March 17, 2020 Provectus (OTCQB: PVCT) reported that data from ongoing research into investigational lysosomal-targeting cancer immunotherapy PV-10 (rose bengal disodium) for the treatment of solid tumor and blood cancers had been accepted for presentation at the now terminated AACR (Free AACR Whitepaper) Annual Meeting 2020, which was originally scheduled to be held April 24-29 in San Diego, California (Press release, Provectus Biopharmaceuticals, MAR 17, 2020, View Source [SID1234555649]). Intratumoral injection with PV-10 yields immunogenic cell death in solid tumor cancers that results in tumor-specific reactivity in circulating T cells.1-4

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The details of the previously accepted abstract were:

Title: Association of heat shock proteins as chaperone for STING: A potential link in a key immune activation mechanism revealed by the novel anti-cancer agent PV-10
Abstract Control Number: 8165
Session Category: Clinical Research
Session Title: Inflammation, Immunity, and Cancer/Modifiers of the Tumor Microenvironment 1
Poster Board Number: 6
Permanent Abstract Number: 5393
This work was led by Aru Narendran, MD, PhD and his team of researchers at the Pediatric Oncology Experimental Therapeutics Investigators’ Consortium (POETIC) Laboratory for Pre-Clinical and Drug Discovery Studies at the University of Calgary (Canada).

On March 10th, according to AACR (Free AACR Whitepaper)’s board of directors, the AACR (Free AACR Whitepaper) Annual Meeting 2020 was terminated based on their evaluation of currently available information related to the novel coronavirus (COVID-19) outbreak and a rescheduled meeting is being planned for later this year.

About PV-10

PV-10 is undergoing clinical study for adult solid tumor cancers, like melanoma and cancers of the liver (including metastatic neuroendocrine tumors and metastatic uveal melanoma). PV-10 is also undergoing preclinical study for pediatric solid tumor cancers (like neuroblastoma, Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma) and pediatric blood cancers (like leukemia).5,6

Tumor Cell Lysosomes as the Seminal Drug Target

Lysosomes are the central organelles for intracellular degradation of biological materials, and nearly all types of eukaryotic cells have them. Discovered by Christian de Duve, MD in 1955, lysosomes are linked to several biological processes, including cell death and immune response. In 1959, de Duve described them as ‘suicide bags’ because their rupture causes cell death and tissue autolysis. He was awarded the Nobel Prize in 1974 for discovering and characterizing lysosomes, which are also linked to each of the three primary cell death pathways: apoptosis, autophagy, and necrosis.

Building on the Discovery, Exploration, and Characterization of Lysosomes

Cancer cells, particularly advanced cancer cells, are very dependent on effective lysosomal functioning.7 Cancer progression and metastasis are associated with lysosomal compartment changes8,9, which are closely correlated with (among other things) invasive growth, angiogenesis, and drug resistance10.

PV-10 selectively accumulates in the lysosomes of cancer cells upon contact, disrupts them, and causes them to die. The physicochemical properties of lysosomes trap PV-10. A lumenal pH of 4.5 to 5.0 is ideal for the conversion of the hydrophilic RB salt into the hydrophobic (lipophilic) lactone version. Provectus1,11, external collaborators5, and other researchers12-14 have independently shown that PV-10 (RB) triggers each of the three primary cell death pathways: apoptosis, autophagy, and necrosis.

Cancer Cell Autolytic Death via PV-10: PV-10 inducing autolytic cell death, or death by self-digestion, in Hepa1-6 murine HCC cells can be viewed in this Provectus video of the event (ethidium homodimer [ED-1] stains DNA, but is excluded from intact nuclei; lysosensor green [LSG] stains intact lysosomes; the video is provided in 30-second frames; the event has a duration of approximately one hour). Exposure to PV-10 triggers the disruption of lysosomes, followed by nucleus failure and autolytic cell death. Identical responses have been shown by the Company in HTB-133 human breast carcinoma (which can be viewed in this Provectus video; this event has a duration of approximately two hours) and H69Ar human multidrug-resistant small cell lung carcinoma. Cancer cell autolytic cell death was reproduced by research collaborators from POETIC using relapsed and refractory human pediatric neuroblastoma cells to show that lysosomes are disrupted upon exposure to PV-10.5

Immune Signaling Pathways: PV-10 causes acute oncolytic destruction of injected tumors (i.e., cell death), mediating several identified immune signaling pathways studied to date, such as the release of danger-associated molecular pattern molecules (DAMPs) and tumor antigens that initiate an immunologic cascade where local response by the innate immune system facilitates systemic anti-tumor immunity by the adaptive immune system. The DAMP release-mediated adaptive immune response activates lymphocytes, including CD8+ T cells, CD4+ T cells, and NKT cells, based on clinical and preclinical experience in multiple tumor types. Other mediated immune signaling pathways that have been identified include poly-ADP ribose polymerase (PARP) cleavage and, now, stimulator of interferon genes (STING), which plays an important role in innate immunity. PV-10 is the first cancer drug that may facilitate multiple, complementary, immune system signaling pathways.15

Orphan Drug Designations (ODDs)

ODD status has been granted to PV-10 by the U.S. Food and Drug Administration for the treatments of metastatic melanoma in 2006, hepatocellular carcinoma in 2011, neuroblastoma in 2018, and ocular melanoma (including uveal melanoma) in 2019.

Drug Product

Rose bengal disodium (RB) (4,5,6,7-tetrachloro-2’,4’,5’,7’-tetraiodofluorescein disodium salt) is a small molecule halogenated xanthene and PV-10’s active pharmaceutical ingredient. PV-10 drug product is a formulation of 10% w/v RB in 0.9% saline, supplied in single-use glass vials containing 5 mL (to deliver) of solution, and administered without dilution to solid tumors via intratumoral injection.

Intellectual Property (IP)

Provectus’ IP includes a family of US and international (a number of countries in Asia, Europe, and North America) patents that protect the process by which pharmaceutical grade RB and related xanthenes are produced, reducing the formation of previously unknown transhalogenated impurities that exist in commercial grade RB in uncontrolled amounts. The requirement to control these impurities is in accordance with International Conference on Harmonisation (ICH) guidelines for the manufacturing of an injectable pharmaceutical. US patent numbers are 8,530,675, 9,273,022, and 9,422,260, with expirations ranging from 2030 to 2031.

The Company’s IP also includes a family of US and international (a number of countries in Asia, Europe, and North America) patents that protect the combination of PV-10 and systemic immunomodulatory therapy (e.g., anti-CTLA-4, anti-PD-1, and anti-PD-L1 agents) for the treatment of a range of solid tumor cancers. US patent numbers are 9,107,887, 9,808,524, 9,839,688, and 10,471,144, with expirations ranging from 2032 to 2035.