On June 10, 2019 Deciphera Pharmaceuticals, Inc. (NASDAQ:DCPH) reported the addition of a new candidate to its pipeline, DCC-3116, a potential first-in-class small molecule designed to inhibit cancer autophagy, a key tumor survival mechanism. DCC-3116, discovered using the Company’s novel switch control inhibitor platform, is designed to inhibit autophagy by inhibiting the ULK kinase (Press release, Deciphera Pharmaceuticals, JUN 10, 2019, View Source [SID1234536973]). Autophagy is a cellular pathway that has been shown to be upregulated in mutant RAS cancers and that also mediates resistance to inhibitors of the RAS signaling pathway. Subject to favorable investigational new drug (IND)-enabling studies and filing and activation of an IND, Deciphera intends to develop DCC-3116 for the potential treatment of mutant RAS cancers in combination with inhibitors of downstream effector targets including RAF, MEK, or ERK inhibitors as well as with direct inhibitors of mutant RAS.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
Based on pre-clinical studies, DCC-3116 selectively inhibits ULK kinase, believed to be the initiating factor that activates autophagy. Autophagy is a cell survival pathway in which cells respond to stress by recycling their own components and/or clearing damaged organelles and proteins from the cell. Mutant RAS cancers, including KRAS, NRAS, and HRAS cancers, are reported to have high basal levels of autophagy, which they use to maintain nutrient supply, regulate cancer cell metabolism, and mitochondria surveillance.1 In multiple in vitro and in vivo models of mutant RAS cancers, autophagy inhibition combined with inhibition of MAPK signaling using MEK inhibitors or ERK inhibitors has demonstrated synergistic anti-tumor effects.2,3 When used in pre-clinical in vitro and in vivo studies in combination with inhibitors of the MAPK pathway, DCC-3116 synergized with these inhibitors to inhibit mutant RAS cancer growth. Cellular studies in mutant RAS cancers have demonstrated that MAPK pathway inhibitors further activate autophagy as a compensatory survival mechanism. Such activation of autophagy is seen with RAF, MEK, and ERK inhibitors as well as with direct inhibitors of mutant KRAS G12C. As an inhibitor of ULK, DCC-3116 is designed to address mutant RAS cancers by inhibiting the basal and compensatory autophagy that mutant RAS cancer cells use for their survival.
"We are very excited to announce our new development candidate, DCC-3116, a potential first-in-class agent aimed at treating mutant RAS cancers through the inhibition of autophagy," said Steve Hoerter, President and Chief Executive Officer of Deciphera. "Recent efforts in the fight against cancer have focused on direct approaches targeting mutant RAS, which comprise approximately 30% of all cancers and that we believe represents one of largest unmet medical needs in oncology. We believe that as a highly selective inhibitor of ULK kinase, DCC-3116 may offer a new and complementary approach to targeting mutant RAS cancer through suppression of autophagy."
"Our new clinical candidate, DCC-3116, is a potent and selective inhibitor of ULK kinase generated using our proprietary switch control inhibitor platform. Inhibition of ULK has potential application in a very wide range of cancers and is an exciting addition to our pipeline," said Daniel Flynn, Executive Vice President, Chief Scientific Officer and Founder of Deciphera.
Deciphera is currently conducting IND-enabling studies for DCC-3116 and, pending favorable results, expects to file an IND in mid-2020.
DCC-3116 Event and Webcast Information
Deciphera will host a live event and webcast to discuss the new program on Tuesday, June 18, 2019 at 8 a.m. ET. The event will feature members of the Deciphera management team and Channing Der, Ph.D., Sarah Graham Kenan Distinguished Professor, Department of Pharmacology, UNC School of Medicine, who is a leading expert in mutant RAS cancers and autophagy.
A live audio webcast of the event and accompanying slides may be accessed through the Investors section of Deciphera’s website at www.deciphera.com. A replay of the webcast will be available for 30 days following the event.