Tempest Presents New Amezalpat MOA Data Reinforcing Its Potential as Novel Cancer Treatment at the 2025 AACR Annual Meeting

On April 28, 2025 Tempest Therapeutics, Inc. (Nasdaq: TPST), a clinical-stage biotechnology company developing first-in-classi targeted and immune-mediated therapeutics to fight cancer, reported that a presentation of new data supporting the immune component of amezalpat’s purported dual mechanism of action that reinforces its potential as a novel cancer treatment at the 2025 American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting (Press release, Tempest Therapeutics, APR 28, 2025, View Source [SID1234652248]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The data presented at the AACR (Free AACR Whitepaper) Annual Meeting show that amezalpat reduced tumor promoting immunosuppression by M2 macrophages and T regulatory cells resulting in immune activation. These data support the immune-mediated anti-cancer activity of the proposed dual MOA of amezalpat," said Sam Whiting, M.D., Ph.D., chief medical officer and head of R&D at Tempest, "and are consistent with clinical data showing promising results in patients with HCC, RCC and CCA including in combination with approved immunotherapy. The results reinforce amezalpat’s novel and potentially first-in-class profile as a cancer therapy."

Amezalpat is an inhibitor of PPAR-alpha, the key regulator of fatty acid oxidation (FAO), which is a key metabolic pathway used by immunosuppressive macrophages and regulatory T cells (Tregs). Both cell populations are associated with poor prognosis in multiple cancer indications. Data presented demonstrated that amezalpat inhibits the development of these cells from precursor populations and is associated with reduced mitochondrial mass, the site of FAO, in immunosuppressive macrophages. Additionally, treatment of Tregs or immunosuppressive macrophages with amezalpat in the presence of tumor and cytotoxic T cells decreases anti-inflammatory cytokine production, indicating blockade of immune suppression that likely contributes to the efficacy of amezalpat observed in clinical trials.

About Amezalpat

Amezalpat is an oral, small molecule, selective PPAR⍺ antagonist. Data suggests that amezalpat treats cancer by targeting tumor cells directly and by modulating immune suppressive cells and angiogenesis in the tumor microenvironment. In a global randomized phase 1b/2 study of amezalpat in combination with atezolizumab and bevacizumab in first-line patients with advanced HCC, the amezalpat arm showed clinical superiority across multiple study endpoints, including overall survival in both the entire population and key subpopulations, when compared to atezolizumab and bevacizumab alone, the standard of care. These randomized data were supported by additional positive results observed in the Phase 1 clinical trial in patients with heavily pretreated advanced solid tumors, including renal cell carcinoma and cholangiocarcinoma.