On October 23, 2024 Schrödinger (Nasdaq: SDGR) reported new preclinical data on SGR-3515, its investigational Wee1/Myt1 inhibitor, during a poster session at the 36th EORTC-NCI-AACR (Free EORTC-NCI-AACR Whitepaper) Symposium (ENA 2024) (Press release, Schrodinger, OCT 23, 2024, View Source [SID1234647357]). The data demonstrate that in preclinical models, treatment with SGR-3515 results in synergistic anti-tumor activity that leads to deeper and more durable responses compared to inhibitors that target only Wee1 or Myt1. The preclinical data also show that SGR-3515 has a favorable pharmacological profile and dosing schedule that supports evaluating intermittent dosing in patients.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
Wee1 and Myt1 kinases regulate the cell cycle and DNA damage response, allowing time for DNA repair before cell division takes place. Concurrent loss of function or inhibition of Wee1 and Myt1 confers selective vulnerability in cancer cells, a mechanism referred to as synthetic lethality, which has become an emerging therapeutic strategy for a range of cancers. A Phase 1 dose-escalation study of SGR-3515 in patients with advanced solid tumors is ongoing in the U.S. and Canada, and initial data from the clinical study is expected in the second half of 2025.
Schrödinger will also present preclinical data from its PRMT5-MTA program during a poster session on October 25. Schrödinger scientists have identified a novel series of selective, potent PRMT5-MTA inhibitors and are optimizing lead compounds for use in peripheral and brain tumors.
"We are pleased to share these encouraging preclinical data on SGR-3515, a potential best-in-class treatment for patients with a broad range of solid tumors, including uterine and ovarian cancers, two patient populations with high unmet need," stated Karen Akinsanya, Ph.D., president of R&D therapeutics at Schrödinger. "We also look forward to presenting preclinical data on the discovery of a novel series of compounds for our PRMT5-MTA inhibitor program. These programs highlight how we are deploying our computational platform at scale to discover highly optimized molecules to address diseases with significant medical need, and we believe the future of our therapeutics portfolio is very promising."
SGR-3515 Data at ENA 2024
The presentation (Abstract # 147), "Discovery of SGR-3515, a first-in-class Wee1/Myt1 inhibitor with differentiated pharmacological properties in xenograft tumor models," includes preclinical data demonstrating superior anti-tumor activity of SGR-3515 compared to inhibitors of Wee1 or Myt1 alone due to strong target engagement of both Wee1 and Myt1. The data show that SGR-3515 is a more potent co-inhibitor of both Wee1 and Myt1 than previously disclosed inhibitors of either target. These data are consistent with prior preclinical observations demonstrating that SGR-3515 has a unique and differentiated pharmacological profile that supports evaluating an intermittent dosing schedule of three days on and 11 days off, as well as five days on and nine days off, which maintained anti-tumor activity while allowing recovery from any mechanism-based hematological toxicity in preclinical models.
The preclinical data also demonstrate superior kinase selectivity and in vitro cell potency of SGR-3515 across a broad cell line panel compared to other known Wee1 and Myt1 inhibitors. These new data suggest that SGR-3515 is significantly more selective than existing compounds with low potential for drug-drug interaction.
PRMT5-MTA Data at ENA 2024
Additionally, Schrödinger will present new preclinical data on its PRMT5-MTA inhibitor program at a poster session during the meeting on October 25 from 9:00 a.m. – 3:00 p.m. CEST. The presentation (Abstract # 372), "Discovery of a highly MTA-synergistic series of PRMT5 inhibitors for the treatment of MTAP-deficient tumors by virtual screening technology," will include preclinical data on the discovery of highly selective PRMT5-MTA inhibitors. The poster will describe how Schrödinger’s virtual screening platform facilitated the identification of structurally distinct chemical matter with a high degree of MTA-synergy for compounds within a novel chemical series in vitro and in cellular contexts. Schrödinger has identified a novel series of selective, potent PRMT5-MTA inhibitors that did not show major off-target liabilities such as hERG inhibition in preclinical studies and may be suitable for use in combinations across tumor types.