Gilead to Present New Trodelvy® Data at the IASLC 2024 World Conference on Lung Cancer

On September 5, 2024 Gilead Sciences, Inc. (Nasdaq: GILD) reported that it will present new data from the company’s broad lung cancer clinical development program during the IASLC 2024 World Conference on Lung Cancer hosted by the International Association for the Study of Lung Cancer, taking place Sept. 7-10, 2024 in San Diego, Calif (Press release, Gilead Sciences, SEP 5, 2024, View Source [SID1234646390]). Data to be highlighted across three oral presentations include: initial results from two cohorts of the EVOKE-02 study of Trodelvy (sacituzumab govitecan-hziy) in previously untreated advanced or metastatic non-small cell lung cancer (mNSCLC), results from a subgroup analysis of the EVOKE-01 study of Trodelvy in second-line mNSCLC, and updated data from the TROPiCS-03 study of Trodelvy in extensive stage small cell lung cancer (ES-SCLC).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

New Findings Further Support the Potential Efficacy of Trodelvy for mNSCLC in the First-Line Setting

Results to be presented from Cohorts C (non-squamous) and D (squamous) of the Phase 2 EVOKE-02 study of Trodelvy in previously untreated mNSCLC in combination with pembrolizumab and carboplatin demonstrate encouraging efficacy in patients with non-AGA-driven mNSCLC and across PD-L1 status. These additional findings advance our scientific understanding of the optimal treatment regimens and appropriate patient populations with mNSCLC that may potentially benefit from treatment with Trodelvy in the first-line setting.

"Our data at WCLC will add to the expanding evidence for the potential of Trodelvy in lung cancer and reinforce our confidence in our broader lung cancer strategy," said Merdad Parsey, MD, PhD, Chief Medical Officer, Gilead Sciences. "The totality of mature EVOKE-02 data suggest that in the first-line setting, Trodelvy in combination with pembrolizumab may have a greater potential to positively impact patients with mNSCLC when given without the addition of chemotherapy. These findings support the ongoing Phase 3 EVOKE-03 study and underscore our commitment to improving the standard of care for patients with lung cancer."

Analysis Shows Overall Survival (OS) Improvement with Trodelvy in a Subgroup of Second-Line mNSCLC Patients

Additionally, Gilead will present data from the EVOKE-01 study in the subgroup of patients whose tumors did not respond to their last anti-PD-(L)1-therapy, building on the primary analysis presented earlier this year. Results from a pre-specified analysis showed a numerical OS improvement vs. docetaxel in this patient population, which was observed across histologies and regardless of whether patients were stable or progressed after their last anti-PD-(L)1-containing treatment. This subgroup analysis was not alpha-controlled for formal statistical testing. These meaningful data in mNSCLC help advance our understanding of Trodelvy’s potential for patients with lung cancer.

Longer-Term Follow-up Data from the Phase 2 TROPiCS-03 ES-SCLC Cohort Demonstrate Promising Activity

Gilead will also share updated results from the global Phase 2 TROPiCS-03 ES-SCLC Cohort. These new data, with additional patients and longer-term follow-up, reinforce promising activity shown with Trodelvy treatment in patients with both platinum-resistant and platinum-sensitive disease and support further investigation of Trodelvy in ES-SCLC, where there is still significant unmet need.

Summary of Presentations

Accepted abstracts at WCLC 2024 include:

Date/Time

Abstract

September 8, 2:00 PM – 3:15 PM PT (Oral Presentation)

Abstract #OA04.04: Sacituzumab Govitecan as Second-Line Treatment in Patients with Extensive Stage Small Cell Lung Cancer

September 9, 10:45 AM – 12:00 PM PT (Oral Presentation)

Abstract #OA08.07: Sacituzumab Govitecan + Pembrolizumab + Carboplatin in 1L Metastatic Non-Small Cell Lung Cancer: The EVOKE-02 Study

September 9, 10:45 AM – 12:00 PM PT (Oral Presentation)

Abstract #OA08.06: Sacituzumab Govitecan vs. Docetaxel in Patients With mNSCLC non-Responsive to Last anti-PD-(L)1–Containing Regimen: EVOKE-01

Trodelvy has not been approved by any regulatory agency for the treatment of mNSCLC or ES-SCLC. Its safety and efficacy have not been established for this use. Trodelvy has a Boxed Warning for severe or life-threatening neutropenia and severe diarrhea; please see below for the approved U.S. Indications and Important Safety Information.

About Trodelvy

Trodelvy (sacituzumab govitecan-hziy) is a first-in-class Trop-2-directed antibody-drug conjugate. Trop-2 is a cell surface antigen highly expressed in multiple tumor types, including in more than 90% of breast, bladder and lung cancers. Trodelvy is intentionally designed with a proprietary hydrolyzable linker attached to SN-38, a topoisomerase I inhibitor payload. This unique combination delivers potent activity to both Trop-2 expressing cells and the tumor microenvironment through a bystander effect.

Trodelvy is approved in almost 50 countries, with multiple additional regulatory reviews underway worldwide, for the treatment of adult patients with unresectable locally advanced or metastatic triple-negative breast cancer (TNBC) who have received two or more prior systemic therapies, at least one of them for metastatic disease.

Trodelvy is also approved to treat certain patients with pre-treated HR+/HER2- metastatic breast cancer in Australia, Brazil, Canada, the European Union, Israel, United Arab Emirates and the United States. In the U.S., Trodelvy has an accelerated approval for treatment of certain patients with second-line metastatic urothelial cancer; see below for full indication statements.

Trodelvy is being explored for potential investigational use in other TNBC, HR+/HER2- and metastatic UC populations, as well as a range of tumor types where Trop-2 is highly expressed, including mNSCLC, head and neck cancer, gynecological cancer, and gastrointestinal cancers.

U.S. Indications for Trodelvy

In the United States, Trodelvy is indicated for the treatment of adult patients with:

Unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC) who have received two or more prior systemic therapies, at least one of them for metastatic disease.
Unresectable locally advanced or metastatic hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative (IHC 0, IHC 1+ or IHC 2+/ISH–) breast cancer who have received endocrine-based therapy and at least two additional systemic therapies in the metastatic setting.
Locally advanced or metastatic urothelial cancer (mUC) who have previously received a platinum-containing chemotherapy and either programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.
U.S. Important Safety Information for Trodelvy

BOXED WARNING: NEUTROPENIA AND DIARRHEA

Severe or life-threatening neutropenia may occur. Withhold Trodelvy for absolute neutrophil count below 1500/mm3 or neutropenic fever. Monitor blood cell counts periodically during treatment. Consider G-CSF for secondary prophylaxis. Initiate anti-infective treatment in patients with febrile neutropenia without delay.
Severe diarrhea may occur. Monitor patients with diarrhea and give fluid and electrolytes as needed. At the onset of diarrhea, evaluate for infectious causes and, if negative, promptly initiate loperamide. If severe diarrhea occurs, withhold Trodelvy until resolved to ≤Grade 1 and reduce subsequent doses.
CONTRAINDICATIONS

Severe hypersensitivity reaction to Trodelvy.
WARNINGS AND PRECAUTIONS

Neutropenia: Severe, life-threatening, or fatal neutropenia can occur and may require dose modification. Neutropenia occurred in 64% of patients treated with Trodelvy. Grade 3-4 neutropenia occurred in 49% of patients. Febrile neutropenia occurred in 6%. Neutropenic colitis occurred in 1.4%. Withhold Trodelvy for absolute neutrophil count below 1500/mm3 on Day 1 of any cycle or neutrophil count below 1000/mm3 on Day 8 of any cycle. Withhold Trodelvy for neutropenic fever. Administer G-CSF as clinically indicated or indicated in Table 1 of USPI.

Diarrhea: Diarrhea occurred in 64% of all patients treated with Trodelvy. Grade 3-4 diarrhea occurred in 11% of patients. One patient had intestinal perforation following diarrhea. Diarrhea that led to dehydration and subsequent acute kidney injury occurred in 0.7% of all patients. Withhold Trodelvy for Grade 3-4 diarrhea and resume when resolved to ≤Grade 1. At onset, evaluate for infectious causes and if negative, promptly initiate loperamide, 4 mg initially followed by 2 mg with every episode of diarrhea for a maximum of 16 mg daily. Discontinue loperamide 12 hours after diarrhea resolves. Additional supportive measures (e.g., fluid and electrolyte substitution) may also be employed as clinically indicated. Patients who exhibit an excessive cholinergic response to treatment can receive appropriate premedication (e.g., atropine) for subsequent treatments.

Hypersensitivity and Infusion-Related Reactions: Serious hypersensitivity reactions including life-threatening anaphylactic reactions have occurred with Trodelvy. Severe signs and symptoms included cardiac arrest, hypotension, wheezing, angioedema, swelling, pneumonitis, and skin reactions. Hypersensitivity reactions within 24 hours of dosing occurred in 35% of patients. Grade 3-4 hypersensitivity occurred in 2% of patients. The incidence of hypersensitivity reactions leading to permanent discontinuation of Trodelvy was 0.2%. The incidence of anaphylactic reactions was 0.2%. Pre-infusion medication is recommended. Have medications and emergency equipment to treat such reactions available for immediate use. Observe patients closely for hypersensitivity and infusion-related reactions during each infusion and for at least 30 minutes after completion of each infusion. Permanently discontinue Trodelvy for Grade 4 infusion-related reactions.

Nausea and Vomiting: Nausea occurred in 64% of all patients treated with Trodelvy and Grade 3-4 nausea occurred in 3% of these patients. Vomiting occurred in 35% of patients and Grade 3-4 vomiting occurred in 2% of these patients. Premedicate with a two or three drug combination regimen (e.g., dexamethasone with either a 5-HT3 receptor antagonist or an NK1 receptor antagonist as well as other drugs as indicated) for prevention of chemotherapy-induced nausea and vomiting (CINV). Withhold Trodelvy doses for Grade 3 nausea or Grade 3-4 vomiting and resume with additional supportive measures when resolved to Grade ≤1. Additional antiemetics and other supportive measures may also be employed as clinically indicated. All patients should be given take-home medications with clear instructions for prevention and treatment of nausea and vomiting.

Increased Risk of Adverse Reactions in Patients with Reduced UGT1A1 Activity: Patients homozygous for the uridine diphosphate-glucuronosyl transferase 1A1 (UGT1A1)*28 allele are at increased risk for neutropenia, febrile neutropenia, and anemia and may be at increased risk for other adverse reactions with Trodelvy. The incidence of Grade 3-4 neutropenia was 58% in patients homozygous for the UGT1A1*28, 49% in patients heterozygous for the UGT1A1*28 allele, and 43% in patients homozygous for the wild-type allele. The incidence of Grade 3-4 anemia was 21% in patients homozygous for the UGT1A1*28 allele, 10% in patients heterozygous for the UGT1A1*28 allele, and 9% in patients homozygous for the wild-type allele. Closely monitor patients with known reduced UGT1A1 activity for adverse reactions. Withhold or permanently discontinue Trodelvy based on clinical assessment of the onset, duration and severity of the observed adverse reactions in patients with evidence of acute early-onset or unusually severe adverse reactions, which may indicate reduced UGT1A1 function.

Embryo-Fetal Toxicity: Based on its mechanism of action, Trodelvy can cause teratogenicity and/or embryo-fetal lethality when administered to a pregnant woman. Trodelvy contains a genotoxic component, SN-38, and targets rapidly dividing cells. Advise pregnant women and females of reproductive potential of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with Trodelvy and for 6 months after the last dose. Advise male patients with female partners of reproductive potential to use effective contraception during treatment with Trodelvy and for 3 months after the last dose.

ADVERSE REACTIONS

In the pooled safety population, the most common (≥ 25%) adverse reactions including laboratory abnormalities were decreased leukocyte count (84%), decreased neutrophil count (75%), decreased hemoglobin (69%), diarrhea (64%), nausea (64%), decreased lymphocyte count (63%), fatigue (51%), alopecia (45%), constipation (37%), increased glucose (37%), decreased albumin (35%), vomiting (35%), decreased appetite (30%), decreased creatinine clearance (28%), increased alkaline phosphatase (28%), decreased magnesium (27%), decreased potassium (26%), and decreased sodium (26%).

In the ASCENT study (locally advanced or metastatic triple-negative breast cancer), the most common adverse reactions (incidence ≥25%) were fatigue, diarrhea, nausea, alopecia, constipation, vomiting, abdominal pain, and decreased appetite. The most frequent serious adverse reactions (SAR) (>1%) were neutropenia (7%), diarrhea (4%), and pneumonia (3%). SAR were reported in 27% of patients, and 5% discontinued therapy due to adverse reactions. The most common Grade 3-4 lab abnormalities (incidence ≥25%) in the ASCENT study were reduced neutrophils, leukocytes, and lymphocytes.

In the TROPiCS-02 study (locally advanced or metastatic HR-positive, HER2-negative breast cancer), the most common adverse reactions (incidence ≥25%) were diarrhea, fatigue, nausea, alopecia, and constipation. The most frequent serious adverse reactions (SAR) (>1%) were diarrhea (5%), febrile neutropenia (4%), neutropenia (3%), abdominal pain, colitis, neutropenic colitis, pneumonia, and vomiting (each 2%). SAR were reported in 28% of patients, and 6% discontinued therapy due to adverse reactions. The most common Grade 3-4 lab abnormalities (incidence ≥25%) in the TROPiCS-02 study were reduced neutrophils and leukocytes.

In the TROPHY study (locally advanced or metastatic urothelial cancer), the most common adverse reactions (incidence ≥25%) were diarrhea, fatigue, nausea, any infection, alopecia, decreased appetite, constipation, vomiting, rash, and abdominal pain. The most frequent serious adverse reactions (SAR) (≥5%) were infection (18%), neutropenia (12%, including febrile neutropenia in 10%), acute kidney injury (6%), urinary tract infection (6%), and sepsis or bacteremia (5%). SAR were reported in 44% of patients, and 10% discontinued due to adverse reactions. The most common Grade 3-4 lab abnormalities (incidence ≥25%) in the TROPHY study were reduced neutrophils, leukocytes, and lymphocytes.

DRUG INTERACTIONS

UGT1A1 Inhibitors: Concomitant administration of Trodelvy with inhibitors of UGT1A1 may increase the incidence of adverse reactions due to potential increase in systemic exposure to SN-38. Avoid administering UGT1A1 inhibitors with Trodelvy.

UGT1A1 Inducers: Exposure to SN-38 may be reduced in patients concomitantly receiving UGT1A1 enzyme inducers. Avoid administering UGT1A1 inducers with Trodelvy.

Please see full Prescribing Information, including BOXED WARNING.

Abdera Therapeutics Announces FDA Orphan Drug Designation for ABD-147 for the Treatment of Neuroendocrine Carcinoma

On September 5, 2024 Abdera Therapeutics Inc., a biopharmaceutical company leveraging its advanced antibody engineering ROVEr platform to design and develop tunable, precision radiopharmaceuticals for cancer, reported that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug Designation to ABD-147 for the treatment of neuroendocrine carcinoma (Press release, Abdera Therapeutics, SEP 5, 2024, View Source [SID1234646389]). ABD-147 is a next-generation precision radiopharmaceutical biologic therapy designed to deliver Actinium-225 (225Ac) to solid tumors expressing DLL3, a protein found on the surface of neuroendocrine tumors, but rarely expressed on the surface of normal cells or tissues. In 2024, Abdera plans to initiate a first-in-human Phase 1 clinical trial with ABD-147 in patients with small cell lung cancer (SCLC) or large cell neuroendocrine carcinoma (LCNEC) who previously received platinum-based therapy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Neuroendocrine carcinomas, including SCLC and LCNEC, are aggressive and challenging to treat effectively with current systemic therapies," said Philippe Bishop, M.D., chief medical officer. "By delivering a potent radioisotope to neuroendocrine tumors expressing DLL3 with custom-engineered PK properties, we believe ABD-147 has the potential to become a best-in-class DLL3-targeting treatment for aggressive neuroendocrine tumors. Along with FDA recently granting Fast Track designation to ABD-147 for the treatment of patients with extensive stage small cell lung cancer (ES-SCLC) who have progressed on or after platinum-based chemotherapy, this Orphan Drug Designation for neuroendocrine carcinoma further underscores the potential of ABD 147 development to offer a significant advantage beyond approved drugs."

The FDA’s Orphan Drug Designation program provides orphan status to drugs and biologics for rare diseases that meet certain criteria. Orphan Drug Designation provides various incentives including tax credits for qualified clinical trials, exemption from user fees, and the potential for seven years of market exclusivity after approval.

About Neuroendocrine Carcinoma

Neuroendocrine carcinoma is a type of cancer that originates from neuroendocrine cells, which have characteristics of both nerve cells and hormone-producing cells. These cancers can develop in various parts of the body, including the lungs (SCLC and LCNEC), the digestive tract, pancreas, prostate, and other endocrine glands and share similar clinical and pathologic traits characterized by higher mitotic rates with extensive necrosis, high tumor mutational burden, and neuroendocrine gene expression.

About Small Cell Lung Cancer and Large Cell Neuroendocrine Carcinoma

The global incidence for SCLC and LCNEC has been reported to represent approximately 325,000 patients and is expected to increase 4% annually through 2029. In the U.S., the incidence has been reported to be approximately 35,000 new cases annually. Fifteen percent of all lung cancer cases are high-grade neuroendocrine cancers. These cancers have the most aggressive clinical course of any type of pulmonary tumor and often metastasize to other parts of the body, including the brain, liver and bone. Without treatment, the median survival from diagnosis has been reported to be only two to four months. With treatment, the overall survival at five years is 5% to 10% for SCLC, and 15% to 25% for LCNEC. SCLC and LCNEC generally carry a poor prognosis and new treatment options are urgently needed.

About ABD-147

ABD-147 is a targeted radiopharmaceutical biologic therapy designed to deliver Actinium-225 (225Ac), a highly potent alpha-emitting radioisotope, to solid tumors expressing delta-like ligand 3 (DLL3) with high affinity. DLL3 is a protein in the Notch pathway that is critical for the development and regulation of neuroendocrine versus epithelial cell differentiation in the lungs. In certain high grade neuroendocrine carcinomas including small cell lung cancer (SCLC), DLL3 is upregulated and specifically expressed on the cell surface in more than 80% of cases. In contrast, DLL3 is absent or very rarely expressed on the surface of nonmalignant cells. Given the high specificity of DLL3 expression on cancer cells and the distinct mechanism of action, DLL3 represents a compelling target for treating SCLC and other DLL3+ solid tumors with targeted radiotherapy.

About the ROVEr Platform

Abdera’s Radio Optimized Vector Engineering (ROVEr) platform enables the company to custom-engineer targeted radiopharmaceuticals with tunable pharmacokinetic (PK) properties to achieve high tumor uptake while minimizing renal exposure and mitigating other systemic radiotoxicities such as myelosuppression. Abdera can optimize the delivery and therapeutic index of potent radioisotopes capable of emitting powerful alpha or beta particles to selectively destroy tumor cells while sparing healthy cells, providing patients with potentially transformative new cancer treatments.

Abdera’s approach offers the ability to design radiotherapeutics against virtually any cancer target expressed on the cell surface. Coupled with a highly potent mechanism of cell killing, the ROVEr platform is uniquely poised to exploit both high- and low-expressing targets to selectively deliver therapeutic levels of radioisotope to cancer cells.

HDAX Therapeutics Announces First Closing of Oversubscribed US $3.2 (CA $4.3) Million Seed Financing

On September 5, 2024 HDAX Therapeutics ("HDAX"), a biotechnology company pioneering a novel approach to targeting HDAC6 for the discovery and development of breakthrough therapeutics for high unmet medical needs, reported the first closing of an oversubscribed US$3.2 (CA$4.3) million seed round (Press release, HDAX Therapeutics, SEP 5, 2024, View Source [SID1234646388]). The financing was led by SeedFolio, FACIT, and Toronto Innovation Acceleration Partners ("TIAP"), with participation from Eos Bioinnovation ("Eos"), Ontario Centre of Innovation ("OCI"), and other investors. Proceeds from this financing will support the company’s progress towards preclinical development candidate nomination and further advancement of its pipeline programs.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

In conjunction with the financing, Brock Reeve, CEO of Eos, and Prakash Gowd, Vice President at TIAP, have joined the HDAX Board of Directors. David Koehler, FACIT and Joe Gatto, SeedFolio will join as Board Observers.

Recent advances in HDAC biology have highlighted the critical role of HDAC6 in microtubule dysfunction, validating the therapeutic potential of this target in inflammatory disease, metabolic dysfunction, and neurological disorders. The involvement of HDAC6 in multiple disease states has led to the pursuit of HDAC6-selective drugs by several companies. However, drug development efforts targeting HDAC6 have faced significant challenges, such as poor efficacy, off-target toxicities, and inadequate drug exposure. Drawing on over 7 years of research originating from the lab of renowned serial entrepreneur Professor Patrick Gunning at the University of Toronto, HDAX was purpose-built to address the challenges of developing effective drugs targeting HDAC6. Harnessing its unique molecular recognition technology, HDAX has devised a next-generation binding mechanism that has the potential to discover best-in-class HDAC6 inhibitors. HDAX’s novel mechanism addresses key drug-design challenges of weak binding, poor pharmacokinetics, and off-target toxicities, paving the way for potentially transformative therapeutic benefits for patients.

"HDAX Therapeutics is at the forefront of developing next-generation HDAC6-targeting therapeutics to improve patient outcomes. Our novel binding mechanism allows us to effectively and safely target the underlying drivers of disease, positioning us to be potentially best-in-class in the HDAC6 space," said Nabanita Nawar, co-founder and CEO of HDAX. "Securing this financing highlights our truly differentiated innovation and the broad applicability of our technology. With this capital, we are well-positioned to advance our pipeline toward development candidate nomination and ultimately deliver meaningful and safe disease-modifying therapies to patients."

"HDAX has made tremendous progress in discovering potent and selective HDAC6 inhibitors, leapfrogging other companies pursuing the target. HDAX’s molecules will not only advance our understanding of HDAC6 biology but also unlock the target’s potential in addressing a number of diseases with high unmet needs," said Roman Fleck, Executive Chairman of HDAX.

Prakash Gowd, TIAP Vice President, commented, "We are incredibly proud to have been able to support HDAX since its inception – first through our University of Toronto Early-Stage (UTEST) program, and now through this pivotal financing. It is a tremendous example of the type of highly innovative and highly promising life sciences ventures we are building in collaboration with our ecosystem partners."

"FACIT commercializes Ontario’s leading oncology ventures, and HDAX’s compelling preclinical profile and strong scientific foundation align with our goals to impact patients," said David O’Neill, FACIT President. "We look forward to working with the management team and alongside other ecosystem partners to realize the full clinical potential of HDAX’s pipeline."

Integrated DNA Technologies Bolsters Comprehensive Genomic Profiling Solutions With Launch of New Archer™ HRD Technology for Cancer Research

On September 5, 2024 Integrated DNA Technologies reported that it is expanding its Archer portfolio of comprehensive genomic profiling (CGP) solutions to include homologous recombination deficiency (HRD) assessment (Press release, INTEGRATED DNA TECHNOLOGIES, SEP 5, 2024, View Source [SID1234646387]). Available as a standalone assay, spiked-in as a supplementary module or integrated in an Archer NGS panel, the new HRD module complements existing Archer microsatellite (MSI) and tumor mutational burden (TMB) assessment capabilities to create a flexible, customizable CGP solution for labs looking to optimize sequencing resources. The HRD assessment is available via the:

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

VARIANTPlex HRD Module—available as a spike-in to other Archer panels or ran alone.
VARIANTPlex Complete Solid Tumor v2 panel—expands Archer’s existing Complete Solid Tumor panel, now capable of assessing HRD.
VARIANTPlex Pan Solid Tumor v2 panel—expands Archer’s existing Pan Solid Tumor panel, now capable of assessing HRD.
Powered by Archer’s Anchored Multiplex PCR (AMP) chemistry and Archer Analysis, the new HRD module and updated Archer NGS panels enable downstream applications of precision medicine, provides a differentiated solution that can be customized to fit a lab’s solid tumor research needs, and expands Archer’s existing CGP portfolio.

"With our new HRD module, IDT is enabling labs to unlock the most comprehensive biomarker content from a single, low-input sample," said Steve Wowk, Vice President/General Manager, Gene Reading Business Unit at IDT. "As a trusted cancer research partner, IDT is continuously innovating on its cancer research solutions to equip labs with the timely, accurate and relevant answers they need about cancer, while helping them overcome the challenges they face with technical and resource constraints. With CGP on-market solutions currently a one-size-fits-all, we’re excited to make our HRD module available as a custom CGP solution, building on our commitment to accelerate the pace of genomics by broadly enabling CGP to advance cancer research."

As comprehensive genomic profiling for solid tumors grows in popularity to rapidly identify cancer biomarkers, IDT’s suite of CGP solutions is designed to fit labs unique needs with pre-designed RNA- and DNA-based panels, customizable panels, and supplementary modules to easily target key genomic signatures like MSI, TMB, and HRD. IDT’s CGP solution allows labs to adjust targets quickly without significant changes to established protocols.

To learn more about HRD assessment capabilities and IDT Archer’s CGP solutions, visit View Source

About IDT

For more than 35 years, Integrated DNA Technologies, Inc. (IDT) has empowered genomics laboratories with an oligonucleotide manufacturing process unlike anyone else in the industry, featuring the most advanced synthesis, modification, purification, and quality control capabilities available. Since its founding in 1987, IDT has progressed from a leading oligo manufacturer to a genomics solutions provider supporting key application areas such as next generation sequencing, CRISPR genome editing, synthetic biology, digital PCR, and RNA interference. IDT manufactures products used by scientists researching many forms of cancer and most inherited and infectious diseases.

Seeking to fulfill its mission of accelerating the pace of genomics, IDT acquired Archer NGS Research Assays in December 2022. When combined with its existing solutions, the expanded portfolio helps realize the shared vision of enabling researchers to rapidly move from the lab to life-changing advances.

IDT’s infrastructure supports customers around the globe with its manufacturing headquarters situated in Coralville, Iowa, USA, with additional manufacturing sites in San Diego, California, USA; Boulder, Colorado, USA; Research Triangle Park, North Carolina, USA; Ann Arbor, Michigan, USA; Leuven, Belgium; and Singapore.

IDT is proud to be part of Danaher. Danaher’s science and technology leadership puts IDT’s solutions at the forefront of the industry, so they can reach more people. Being part of Danaher means we can offer unparalleled breadth and depth of expertise and solutions to our customers.

Together with Danaher’s other businesses across Biotechnology, Diagnostics and Life Sciences, we unlock the transformative potential of cutting-edge science and technology to improve billions of lives every day.

For more information about IDT, visit www.idtdna.com and follow the company on LinkedIn, X, Facebook, YouTube, and Instagram.

Disclaimer: RUO — For research use only. Not for use in diagnostic procedures. Unless otherwise agreed to in writing, IDT does not intend these products to be used in clinical applications and does not warrant their fitness or suitability for any clinical diagnostic use.

Bayer to Present New Prostate Cancer Data and Continued Oncology Portfolio Research at ESMO 2024

On September 5, 2024 Bayer reported that it will present new oncology data, including a late-breaking, comprehensive analysis from the Phase III ARANOTE trial investigating NUBEQA (darolutamide) plus androgen deprivation therapy (ADT) in patients with metastatic hormone-sensitive prostate cancer (mHSPC), at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) Congress, taking place in Barcelona, Spain, from September 13-17, 2024 (Press release, Bayer, SEP 5, 2024, View Source [SID1234646386]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

NUBEQA is indicated in the U.S. for the treatment of adult patients with mHSPC in combination with docetaxel and for the treatment of adult patients with non-metastatic castration-resistant prostate cancer (nmCRPC).1

Late-breaking results from the European Organisation for Research and Treatment of Cancer’s (EORTC) Phase III PEACE-III study of the first-and-only-approved targeted alpha emitting radiopharmaceutical, XOFIGO (radium-223 dichloride), in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC), of which Bayer is a key sponsor, will be presented during a Presidential Symposium.

XOFIGO injection is indicated in the U.S. for the treatment of patients with castration-resistant prostate cancer (CRPC), symptomatic bone metastases and no known visceral metastatic disease.2

Bayer will also highlight an updated analysis from the SCOUT (pediatric participants) and NAVIGATE (adult and pediatric participants) studies evaluating the efficacy and safety of VITRAKVI (larotrectinib) in patients with TRK fusion cancer.

VITRAKVI is approved for the treatment of adult and pediatric patients with solid tumors that have an NTRK gene fusion without a known acquired resistance mutation, are metastatic or where surgical resection is likely to result in severe morbidity, and have no satisfactory alternative treatments or that have progressed following treatment. Patients should be selected for therapy based on an FDA-approved test. This indication is approved under accelerated approval based on overall response rate (ORR) and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.3

Trial in Progress (TiP) data from SOHO-2, a Phase III trial evaluating the effect of oral BAY 2927088 compared with standard of care as first-line treatment for locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring HER2-activating mutations, will also be presented. Late-breaking results from the Phase I/II SOHO-01 trial will be presented during a Presidential Symposium at the 2024 World Conference on Lung Cancer (WCLC 2024), taking place September 7-10, in San Diego. BAY 2927088 is an oral, reversible, small molecule tyrosine kinase inhibitor under investigational development as a potential new targeted therapy for patients with NSCLC harboring HER2-activating mutations.

Details on abstracts follow:

NUBEQA (darolutamide)

Efficacy and safety of darolutamide plus androgen-deprivation therapy (ADT) in patients with metastatic hormone-sensitive prostate cancer (mHSPC) from the phase 3 ARANOTE trial
Abstract: LBA68; September 16, 2024; 10:15 a.m. CEST/4:15 a.m. EDT
XOFIGO (Radium-223 dichloride)

A randomized multicenter open-label phase III trial comparing enzalutamide vs. a combination of radium-223 (223Ra) and enzalutamide in asymptomatic or mildly symptomatic patients with castration-resistant prostate cancer and bone metastases. First results of EORTC-1333/PEACE III
Abstract: LBA1; Presidential Symposium 1; September 14, 2024; 4:30 p.m. CEST/10:30 a.m. EDT
Lutetium-177–prostate-specific membrane antigen (177Lu-PSMA) therapy in patients with prior radium‑223 (223Ra)
Abstract: 1629P; September 15, 2024
Open-label, multi-centre randomised trial of radium-223-docetaxel versus docetaxel-Radium 223 sequence in metastatic castration resistant prostate cancer (mCRPC) with prospective biomarker evaluation for patient selection (RAPSON study)
Abstract: LBA71; September 16, 2024; 10:50 a.m. CEST/4:50 a.m. EDT
VITRAKVI (larotrectinib)

Efficacy and safety of larotrectinib as first-line treatment for patients with TRK fusion cancer: an updated analysis
Abstract: 628P; September 14, 2024
Long-term efficacy and safety of larotrectinib in non-primary central nervous system (CNS) TRK fusion cancer
Abstract: 627P; September 14, 2024
BAY 2927088

A randomized phase III trial evaluating oral BAY 2927088, compared with standard of care, as first-line treatment of locally advanced or metastatic NSCLC harboring HER2-activating mutations (SOHO-02)
Abstract: 1395TiP; September 14, 2024
STIVARGA (regorafenib)

EREMISS Trial: A double-blind placebo (PBO)-controlled randomized trial assessing efficacy/safety of regorafenib (REGO) as maintenance therapy after 1st line doxorubicin-based chemotherapy in advanced soft-tissue sarcoma (ASTS) patients (pts)
Abstract: 1718O; September 16, 2024; 2:45 p.m. CEST/8:45 a.m. EDT

Regomune study: A phase II study of regorafenib + avelumab in solid tumors. Results of the radioiodine-refractory differentiated thyroid cancer (RR-DTC)
Abstract: 1925MO; September 13, 2024; 4:00 p.m. CEST/10:00 a.m. EDT

Artificial Intelligence (AI) based prognostication from baseline computed tomography (CT) scans in a phase 3 advanced non-small cell lung cancer (aNSCLC) trial
Abstract: 222P; Sunday, September 15, 2024
INDICATIONS
NUBEQA (darolutamide)1

NUBEQA (darolutamide) is an androgen receptor inhibitor indicated for the treatment of adult patients with:

Non-metastatic castration-resistant prostate cancer (nmCRPC)
Metastatic hormone-sensitive prostate cancer (mHSPC) in combination with docetaxel
IMPORTANT SAFETY INFORMATION

Warnings & Precautions

Ischemic Heart Disease – In a study of patients with nmCRPC (ARAMIS), ischemic heart disease occurred in 3.2% of patients receiving NUBEQA versus 2.5% receiving placebo, including Grade 3-4 events in 1.7% vs. 0.4%, respectively. Ischemic events led to death in 0.3% of patients receiving NUBEQA vs. 0.2% receiving placebo. In a study of patients with mHSPC (ARASENS), ischemic heart disease occurred in 3.2% of patients receiving NUBEQA with docetaxel vs. 2% receiving placebo with docetaxel, including Grade 3-4 events in 1.3% vs. 1.1%, respectively. Ischemic events led to death in 0.3% of patients receiving NUBEQA with docetaxel vs. 0% receiving placebo with docetaxel. Monitor for signs and symptoms of ischemic heart disease. Optimize management of cardiovascular risk factors, such as hypertension, diabetes, or dyslipidemia. Discontinue NUBEQA for Grade 3-4 ischemic heart disease.

Seizure – In ARAMIS, Grade 1-2 seizure occurred in 0.2% of patients receiving NUBEQA vs. 0.2% receiving placebo. Seizure occurred 261 and 456 days after initiation of NUBEQA. In ARASENS, seizure occurred in 0.6% of patients receiving NUBEQA with docetaxel, including one Grade 3 event, vs. 0.2% receiving placebo with docetaxel. Seizure occurred 38 to 340 days after initiation of NUBEQA. It is unknown whether antiepileptic medications will prevent seizures with NUBEQA. Advise patients of the risk of developing a seizure while receiving NUBEQA and of engaging in any activity where sudden loss of consciousness could cause harm to themselves or others. Consider discontinuation of NUBEQA in patients who develop a seizure during treatment.

Embryo-Fetal Toxicity – Safety and efficacy of NUBEQA have not been established in females. NUBEQA can cause fetal harm and loss of pregnancy. Advise males with female partners of reproductive potential to use effective contraception during treatment with NUBEQA and for 1 week after the last dose.

Adverse Reactions

In ARAMIS, serious adverse reactions occurred in 25% of patients receiving NUBEQA vs. 20% of patients receiving placebo. Serious adverse reactions in ≥1% of patients who received NUBEQA included urinary retention, pneumonia, and hematuria. Fatal adverse reactions occurred in 3.9% of patients receiving NUBEQA vs. 3.2% of patients receiving placebo. Fatal adverse reactions in patients who received NUBEQA included death (0.4%), cardiac failure (0.3%), cardiac arrest (0.2%), general physical health deterioration (0.2%), and pulmonary embolism (0.2%). The most common adverse reactions (>2% with a ≥2% increase over placebo), including laboratory test abnormalities, were increased AST, decreased neutrophil count, fatigue, increased bilirubin, pain in extremity and rash. Clinically relevant adverse reactions occurring in ≥2% of patients treated with NUBEQA included ischemic heart disease and heart failure.

In ARASENS, serious adverse reactions occurred in 45% of patients receiving NUBEQA with docetaxel vs. 42% of patients receiving placebo with docetaxel. Serious adverse reactions in ≥2% of patients who received NUBEQA with docetaxel included febrile neutropenia (6%), decreased neutrophil count (2.8%), musculoskeletal pain (2.6%), and pneumonia (2.6%). Fatal adverse reactions occurred in 4% of patients receiving NUBEQA with docetaxel vs. 4% of patients receiving placebo with docetaxel. Fatal adverse reactions in patients who received NUBEQA included COVID-19/COVID-19 pneumonia (0.8%), myocardial infarction (0.3%), and sudden death (0.3%). The most common adverse reactions (≥10% with a ≥2% increase over placebo with docetaxel) were constipation, rash, decreased appetite, hemorrhage, increased weight, and hypertension. The most common laboratory test abnormalities (≥30%) were anemia, hyperglycemia, decreased lymphocyte count, decreased neutrophil count, increased AST, increased ALT, and hypocalcemia. Clinically relevant adverse reactions in <10% of patients who received NUBEQA with docetaxel included fractures, ischemic heart disease, seizures, and drug-induced liver injury.

Drug Interactions

Effect of Other Drugs on NUBEQA – Combined P-gp and strong or moderate CYP3A4 inducers decrease NUBEQA exposure, which may decrease NUBEQA activity. Avoid concomitant use.

Combined P-gp and strong CYP3A4 inhibitors increase NUBEQA exposure, which may increase the risk of NUBEQA adverse reactions. Monitor more frequently and modify NUBEQA dose as needed.

Effects of NUBEQA on Other Drugs – NUBEQA inhibits breast cancer resistance protein (BCRP) transporter. Concomitant use increases exposure (AUC) and maximal concentration of BCRP substrates, which may increase the risk of BCRP substrate-related toxicities. Avoid concomitant use where possible. If used together, monitor more frequently for adverse reactions, and consider dose reduction of the BCRP substrate.

NUBEQA inhibits OATP1B1 and OATP1B3 transporters. Concomitant use may increase plasma concentrations of OATP1B1 or OATP1B3 substrates. Monitor more frequently for adverse reactions and consider dose reduction of these substrates.

Review the Prescribing Information of drugs that are BCRP, OATP1B1, and OATP1B3 substrates when used concomitantly with NUBEQA.

For important risk and use information about NUBEQA, please see the full Prescribing Information.

INDICATION
XOFIGO (radium Ra 223 dichloride) Injection2

Xofigo is indicated for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases and no known visceral metastatic disease.

IMPORTANT SAFETY INFORMATION

Warnings & Precautions:

Bone Marrow Suppression: In the phase 3 ALSYMPCA trial, 2% of patients in the Xofigo arm experienced bone marrow failure or ongoing pancytopenia, compared to no patients treated with placebo. There were two deaths due to bone marrow failure. For 7 of 13 patients treated with Xofigo bone marrow failure was ongoing at the time of death. Among the 13 patients who experienced bone marrow failure, 54% required blood transfusions. Four percent (4%) of patients in the Xofigo arm and 2% in the placebo arm permanently discontinued therapy due to bone marrow suppression. In the randomized trial, deaths related to vascular hemorrhage in association with myelosuppression were observed in 1% of Xofigo-treated patients compared to 0.3% of patients treated with placebo. The incidence of infection-related deaths (2%), serious infections (10%), and febrile neutropenia (<1%) was similar for patients treated with Xofigo and placebo. Myelosuppression–notably thrombocytopenia, neutropenia, pancytopenia, and leukopenia–has been reported in patients treated with Xofigo.

Monitor patients with evidence of compromised bone marrow reserve closely and provide supportive care measures when clinically indicated. Discontinue Xofigo in patients who experience life-threatening complications despite supportive care for bone marrow failure
Hematological Evaluation: Monitor blood counts at baseline and prior to every dose of Xofigo. Prior to first administering Xofigo, the absolute neutrophil count (ANC) should be ≥1.5 × 109/L, the platelet count ≥100 × 109/L, and hemoglobin ≥10 g/dL. Prior to subsequent administrations, the ANC should be ≥1 × 109/L and the platelet count ≥50 × 109/L. Discontinue Xofigo if hematologic values do not recover within 6 to 8 weeks after the last administration despite receiving supportive care
Concomitant Use With Chemotherapy: Safety and efficacy of concomitant chemotherapy with Xofigo have not been established. Outside of a clinical trial, concomitant use of Xofigo in patients on chemotherapy is not recommended due to the potential for additive myelosuppression. If chemotherapy, other systemic radioisotopes, or hemibody external radiotherapy are administered during the treatment period, Xofigo should be discontinued
Increased Fractures and Mortality in Combination With Abiraterone Plus Prednisone/Prednisolone: Xofigo is not recommended for use in combination with abiraterone acetate plus prednisone/prednisolone outside of clinical trials. At the primary analysis of the Phase 3 ERA-223 study that evaluated concurrent initiation of Xofigo in combination with abiraterone acetate plus prednisone/prednisolone in 806 asymptomatic or mildly symptomatic mCRPC patients, an increased incidence of fractures (28.6% vs 11.4%) and deaths (38.5% vs 35.5%) have been observed in patients who received Xofigo in combination with abiraterone acetate plus prednisone/prednisolone compared to patients who received placebo in combination with abiraterone acetate plus prednisone/prednisolone. Safety and efficacy with the combination of Xofigo and agents other than gonadotropin-releasing hormone analogues have not been established
Embryo-Fetal Toxicity: The safety and efficacy of Xofigo have not been established in females. Xofigo can cause fetal harm when administered to a pregnant female. Advise pregnant females and females of reproductive potential of the potential risk to a fetus. Advise male patients to use condoms and their female partners of reproductive potential to use effective contraception during and for 6 months after completing treatment with Xofigo
Administration and Radiation Protection: Xofigo should be received, used, and administered only by authorized persons in designated clinical settings. The administration of Xofigo is associated with potential risks to other persons from radiation or contamination from spills of bodily fluids such as urine, feces, or vomit. Therefore, radiation protection precautions must be taken in accordance with national and local regulations

Fluid Status: Dehydration occurred in 3% of patients on Xofigo and 1% of patients on placebo. Xofigo increases adverse reactions such as diarrhea, nausea, and vomiting, which may result in dehydration. Monitor patients’ oral intake and fluid status carefully and promptly treat patients who display signs or symptoms of dehydration or hypovolemia

Injection Site Reactions: Erythema, pain, and edema at the injection site were reported in 1% of patients on Xofigo

Secondary Malignant Neoplasms: Xofigo contributes to a patient’s overall long-term cumulative radiation exposure. Long-term cumulative radiation exposure may be associated with an increased risk of cancer and hereditary defects. Due to its mechanism of action and neoplastic changes, including osteosarcomas, in rats following administration of radium-223 dichloride, Xofigo may increase the risk of osteosarcoma or other secondary malignant neoplasms. However, the overall incidence of new malignancies in the randomized trial was lower on the Xofigo arm compared to placebo (<1% vs 2%; respectively), but the expected latency period for the development of secondary malignancies exceeds the duration of follow-up for patients on the trial

Subsequent Treatment With Cytotoxic Chemotherapy: In the randomized clinical trial, 16% of patients in the Xofigo group and 18% of patients in the placebo group received cytotoxic chemotherapy after completion of study treatments. Adequate safety monitoring and laboratory testing was not performed to assess how patients treated with Xofigo will tolerate subsequent cytotoxic chemotherapy

Adverse Reactions: The most common adverse reactions (≥10%) in the Xofigo arm vs the placebo arm, respectively, were nausea (36% vs 35%), diarrhea (25% vs 15%), vomiting (19% vs 14%), and peripheral edema (13% vs 10%). Grade 3 and 4 adverse events were reported in 57% of Xofigo-treated patients and 63% of placebo-treated patients. The most common hematologic laboratory abnormalities in the Xofigo arm (≥10%) vs the placebo arm, respectively, were anemia (93% vs 88%), lymphocytopenia (72% vs 53%), leukopenia (35% vs 10%), thrombocytopenia (31% vs 22%), and neutropenia (18% vs 5%)

For important risk and use information about Xofigo, please see the Full Prescribing Information.

INDICATION
VITRAKVI (larotrectinib)3

VITRAKVI is indicated for the treatment of adult and pediatric patients with solid tumors that:

have a neurotrophic receptor tyrosine kinase (NTRK) gene fusion without a known acquired resistance mutation,
are metastatic or where surgical resection is likely to result in severe morbidity, and
have no satisfactory alternative treatments or that have progressed following treatment.
Select patients for therapy based on an FDA-approved test.

This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

IMPORTANT SAFETY INFORMATION

Warnings & Precautions

Central Nervous System Effects: Central nervous system (CNS) adverse reactions occurred in patients receiving VITRAKVI, including dizziness, cognitive impairment, mood disorders, and sleep disturbances.

In patients who received VITRAKVI, all grades CNS effects including cognitive impairment, mood disorders, dizziness and sleep disorders were observed in 42% with Grades 3-4 in 3.9% of patients.

Cognitive impairment occurred in 11% of patients. The median time to onset of cognitive impairment was 5.6 months (range: 2 days to 41 months). Cognitive impairment occurring in ≥ 1% of patients included memory impairment (3.6%), confusional state (2.9%), disturbance in attention (2.9%), delirium (2.2%), cognitive disorders (1.4%), and Grade 3 cognitive adverse reactions occurred in 2.5% of patients. Among the 30 patients with cognitive impairment, 7% required a dose modification and 20% required dose interruption.

Mood disorders occurred in 14% of patients. The median time to onset of mood disorders was 3.9 months (range: 1 day to 40.5 months). Mood disorders occurring in ≥1% of patients included anxiety (5%), depression (3.9%), agitation (2.9%), and irritability (2.9%). Grade 3 mood disorders occurred in 0.4% of patients.

Dizziness occurred in 27% of patients, and Grade 3 dizziness occurred in 1.1% of patients. Among the 74 patients who experienced dizziness, 5% of patients required a dose modification and 5% required dose interruption.

Sleep disturbances occurred in 10% of patients. Sleep disturbances included insomnia (7%), somnolence (2.5%), and sleep disorder (0.4%). There were no Grade 3-4 sleep disturbances. Among the 28 patients who experienced sleep disturbances, 1 patient each (3.6%) required a dose modification or dose interruption.

Advise patients and caretakers of these risks with VITRAKVI. Advise patients not to drive or operate hazardous machinery if they are experiencing neurologic adverse reactions. Withhold or permanently discontinue VITRAKVI based on the severity. If withheld, modify the VITRAKVI dosage when resumed.

Skeletal Fractures: Among 187 adult patients who received VITRAKVI across clinical trials, fractures were reported in 7% and among 92 pediatric patients, fractures were reported in 9% (N=279; 8%). Median time to fracture was 11.6 months (range 0.9 to 45.8 months) in patients followed per fracture. Fractures of the femur, hip or acetabulum were reported in 4 patients (3 adult, 1 pediatric). Most fractures were associated with minimal or moderate trauma. Some fractures were associated with radiologic abnormalities suggestive of local tumor involvement. VITRAKVI treatment was interrupted due to fracture in 1.4% patients.

Promptly evaluate patients with signs or symptoms of potential fracture (e.g., pain, changes in mobility, deformity). There are no data on the effects of VITRAKVI on healing of known fractures or risk of future fractures.

Hepatotoxicity: Hepatotoxicity including drug induced liver injury (DILI) has been reported in patients taking VITRAKVI.

In patients who received VITRAKVI, increased AST of any grade occurred in 52% of patients and increased ALT of any grade occurred in 45%. Grade 3-4 increased AST or ALT occurred in 3.1% and 2.5% of patients, respectively. The median time to onset of increased AST was 2.1 months (range: 1 day to 4.3 years). The median time to onset of increased ALT was 2.3 months (range: 1 day to 4.2 years). Increased AST and ALT leading to dose modifications occurred in 1.4% and 2.2% of patients, respectively. Increased AST or ALT led to permanent discontinuation in 3 (1.1%) of patients.

There have been reports in adult patients from clinical studies and post-marketing cases of Grade ≥ 2 increases in ALT and/or AST with increases in bilirubin ≥ 2 x ULN.

Obtain liver function tests (ALT, AST, ALP and bilirubin) before initiation of VITRAKVI and monitor every 2 weeks during the first two months of treatment, then monthly thereafter, or more frequently following the occurrence of Grade 2 or greater AST or ALT elevation. Temporarily withhold, reduce the dose, or permanently discontinue VITRAKVI based on severity.

Embryo-Fetal Toxicity: VITRAKVI can cause fetal harm when administered to a pregnant woman. Larotrectinib resulted in malformations in rats and rabbits at maternal exposures that were approximately 11- and 0.7-times, respectively, those observed at the clinical dose of 100 mg twice daily. Advise women of the potential risk to a fetus. Advise females of reproductive potential to use an effective method of contraception during treatment and for 1 week after the last dose of VITRAKVI.

Adverse Reactions

The most common adverse reactions (≥20%), including laboratory abnormalities, were: increased AST (52%), increased ALT (45%), anemia (42%), musculoskeletal pain (42%), fatigue (36%), hypoalbuminemia (36%), neutropenia (36%), increased alkaline phosphatase (34%), cough (32%), leukopenia (28%), constipation (27%), diarrhea (27%), dizziness (27%), hypocalcemia (25%), nausea (25%), vomiting (25%), pyrexia (24%), lymphopenia (22%) and abdominal pain (21%).

Drug Interactions

Avoid coadministration of VITRAKVI with strong CYP3A4 inhibitors (including grapefruit or grapefruit juice), strong CYP3A4 inducers (including St. John’s wort), or sensitive CYP3A4 substrates. If coadministration of strong CYP3A4 inhibitors or inducers cannot be avoided, modify the VITRAKVI dose as recommended. If coadministration of sensitive CYP3A4 substrates cannot be avoided, monitor patients for increased adverse reactions of these drugs. For coadministration with moderate CYP3A4 inhibitors, monitor for adverse reactions more frequently and reduce the dosage based on severity. For coadministration with moderate CYP3A4 inducers, modify dose as recommended.

Use in Specific Populations

Lactation: Advise women not to breastfeed during treatment with VITRAKVI and for 1 week after the last dose.

For important risk and use information about VITRAKVI, please see the full Prescribing Information.

INDICATIONS
STIVARGA (regorafenib)4

STIVARGA is indicated for the treatment of patients with metastatic colorectal cancer (CRC) who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF therapy, and, if RAS wild-type, an anti-EGFR therapy.

STIVARGA is indicated for the treatment of patients with locally advanced, unresectable or metastatic gastrointestinal stromal tumor (GIST) who have been previously treated with imatinib mesylate and sunitinib malate.

STIVARGA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib.

Important Safety Information

WARNING: HEPATOTOXICITY

Severe and sometimes fatal hepatotoxicity has occurred in clinical trials.
Monitor hepatic function prior to and during treatment.
Interrupt and then reduce or discontinue STIVARGA for hepatotoxicity as manifested by elevated liver function tests or hepatocellular necrosis, depending upon severity and persistence.
Hepatotoxicity: Severe drug-induced liver injury with fatal outcome occurred in STIVARGA-treated patients across all clinical trials. In most cases, liver dysfunction occurred within the first 2 months of therapy and was characterized by a hepatocellular pattern of injury. In metastatic colorectal cancer (mCRC), fatal hepatic failure occurred in 1.6% of patients in the STIVARGA arm and in 0.4% of patients in the placebo arm. In gastrointestinal stromal tumor (GIST), fatal hepatic failure occurred in 0.8% of patients in the STIVARGA arm. In hepatocellular carcinoma (HCC), there was no increase in the incidence of fatal hepatic failure as compared to placebo.

Liver Function Monitoring: Obtain liver function tests (ALT, AST, and bilirubin) before initiation of STIVARGA and monitor at least every 2 weeks during the first 2 months of treatment. Thereafter, monitor monthly or more frequently as clinically indicated. Monitor liver function tests weekly in patients experiencing elevated liver function tests until improvement to less than 3 times the upper limit of normal (ULN) or baseline values. Temporarily hold and then reduce or permanently discontinue STIVARGA, depending on the severity and persistence of hepatotoxicity as manifested by elevated liver function tests or hepatocellular necrosis.

Infections: STIVARGA caused an increased risk of infections. The overall incidence of infection (Grades 1-5) was higher (32% vs 17%) in 1142 STIVARGA-treated patients as compared to the control arm in randomized placebo-controlled trials. The incidence of grade 3 or greater infections in STIVARGA treated patients was 9%. The most common infections were urinary tract infections (5.7%), nasopharyngitis (4.0%), mucocutaneous and systemic fungal infections (3.3%) and pneumonia (2.6%). Fatal outcomes caused by infection occurred more often in patients treated with STIVARGA (1.0%) as compared to patients receiving placebo (0.3%); the most common fatal infections were respiratory (0.6% vs 0.2%). Withhold STIVARGA for Grade 3 or 4 infections, or worsening infection of any grade. Resume STIVARGA at the same dose following resolution of infection.

Hemorrhage: STIVARGA caused an increased incidence of hemorrhage. The overall incidence (Grades 1-5) was 18.2% in 1142 patients treated with STIVARGA vs 9.5% with placebo in randomized, placebo-controlled trials. The incidence of grade 3 or greater hemorrhage in patients treated with STIVARGA was 3.0%. The incidence of fatal hemorrhagic events was 0.7%, involving the central nervous system or the respiratory, gastrointestinal, or genitourinary tracts. Permanently discontinue STIVARGA in patients with severe or life-threatening hemorrhage and monitor INR levels more frequently in patients receiving warfarin.

Gastrointestinal Perforation or Fistula: Gastrointestinal perforation occurred in 0.6% of 4518 patients treated with STIVARGA across all clinical trials of STIVARGA administered as a single agent; this included eight fatal events. Gastrointestinal fistula occurred in 0.8% of patients treated with STIVARGA and in 0.2% of patients in the placebo arm across randomized, placebo-controlled trials. Permanently discontinue STIVARGA in patients who develop gastrointestinal perforation or fistula.

Dermatological Toxicity: In randomized, placebo-controlled trials, adverse skin reactions occurred in 71.9% of patients with STIVARGA arm and 25.5% of patients in the placebo arm including hand-foot skin reaction (HFSR) also known as palmar-plantar erythrodysesthesia syndrome (PPES) and severe rash, requiring dose modification. In the randomized, placebo-controlled trials, the overall incidence of HFSR was higher in 1142 STIVARGA-treated patients (53% vs 8%) than in the placebo-treated patients. Most cases of HFSR in STIVARGA-treated patients appeared during the first cycle of treatment. The incidences of Grade 3 HFSR (16% vs <1%), Grade 3 rash (3% vs <1%), serious adverse reactions of erythema multiforme (<0.1% vs 0%), and Stevens-Johnson syndrome (<0.1% vs 0%) were higher in STIVARGA-treated patients. Across all trials, a higher incidence of HFSR was observed in Asian patients treated with STIVARGA (all grades: 72%; Grade 3: 18%). Toxic epidermal necrolysis occurred in 0.02% of 4518 STIVARGA-treated patients across all clinical trials of STIVARGA administered as a single agent. Withhold STIVARGA, reduce the dose, or permanently discontinue depending on the severity and persistence of dermatologic toxicity.

Hypertension: Hypertensive crisis occurred in 0.2% in STIVARGA-treated patients and in none of the patients in placebo arm across all randomized, placebo-controlled trials. STIVARGA caused an increased incidence of hypertension (30% vs 8% in mCRC, 59% vs 27% in GIST, and 31% vs 6% in HCC). The onset of hypertension occurred during the first cycle of treatment in most patients who developed hypertension (67% in randomized, placebo controlled trials). Do not initiate STIVARGA until blood pressure is adequately controlled. Monitor blood pressure weekly for the first 6 weeks of treatment and then every cycle, or more frequently, as clinically indicated. Temporarily or permanently withhold STIVARGA for severe or uncontrolled hypertension.

Cardiac Ischemia and Infarction: STIVARGA increased the incidence of myocardial ischemia and infarction (0.9% with STIVARGA vs 0.2% with placebo) in randomized placebo-controlled trials. Withhold STIVARGA in patients who develop new or acute cardiac ischemia or infarction, and resume only after resolution of acute cardiac ischemic events if the potential benefits outweigh the risks of further cardiac ischemia.

Reversible Posterior Leukoencephalopathy Syndrome (RPLS): Reversible posterior leukoencephalopathy syndrome (RPLS), a syndrome of subcortical vasogenic edema diagnosed by characteristics finding on MRI, occurred in one of 4800 STIVARGA-treated patients across all clinical trials. Perform an evaluation for RPLS in any patient presenting with seizures, severe headache, visual disturbances, confusion, or altered mental function. Discontinue STIVARGA in patients who develop RPLS.

Wound Healing Complications: Impaired wound healing complications can occur in patients who receive drugs that inhibit the VEGF signaling pathway. Therefore, STIVARGA has the potential to adversely affect wound healing. Withhold STIVARGA for at least 2 weeks prior to elective surgery. Do not administer for at least 2 weeks following major surgery and until adequate wound healing. The safety of resumption of STIVARGA after resolution of wound healing complications has not been established.

Embryo-Fetal Toxicity: STIVARGA can cause fetal harm when administered to a pregnant woman. There are no available data on STIVARGA use in pregnant women. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential and males with female partners of reproductive potential to use effective contraception during treatment with STIVARGA and for 2 months after the final dose.

Nursing Mothers: Because of the potential for serious adverse reactions in breastfed infants from STIVARGA, do not breastfeed during treatment with STIVARGA and for 2 weeks after the final dose.

Most Frequently Observed Adverse Drug Reactions in mCRC (≥30%): The most frequently observed adverse drug reactions (≥30%) in STIVARGA-treated patients vs placebo-treated patients in mCRC, respectively, were: asthenia/fatigue (64% vs 46%), pain (59% vs 48%), decreased appetite and food intake (47% vs 28%), HFSR/PPE (45% vs 7%), diarrhea (43% vs 17%), mucositis (33% vs 5%), weight loss (32% vs 10%), infection (31% vs 17%), hypertension (30% vs 8%), and dysphonia (30% vs 6%).

Most Frequently Observed Adverse Drug Reactions in GIST (≥30%): The most frequently observed adverse drug reactions (≥30%) in STIVARGA-treated patients vs placebo-treated patients in GIST, respectively, were: HFSR/PPE (67% vs 12%), pain (60% vs 55%), hypertension (59% vs 27%), asthenia/fatigue (52% vs 39%), diarrhea (47% vs 9%), mucositis (40% vs 8%), dysphonia (39% vs 9%), infection (32% vs 5%), decreased appetite and food intake (31% vs 21%), and rash (30% vs 3%).

Most Frequently Observed Adverse Drug Reactions in HCC (≥30%): The most frequently observed adverse drug reactions (≥30%) in STIVARGA-treated patients vs placebo-treated patients in HCC, respectively, were: pain (55% vs 44%), HFSR/PPE (51% vs 7%), asthenia/fatigue (42% vs 33%), diarrhea (41% vs 15%), hypertension (31% vs 6%), infection (31% vs 18%), decreased appetite and food intake (31% vs 15%).