On June 3, 2024 Johnson & Johnson reported results from a subgroup analysis of the Phase 3 CARTITUDE-4 study. The data show CARVYKTI (ciltacabtagene autoleucel; cilta-cel) significantly improved progression-free survival (PFS) compared to standard therapies of pomalidomide, bortezomib and dexamethasone (PVd) or daratumumab, pomalidomide and dexamethasone (DPd) for patients with lenalidomide-refractory multiple myeloma after one prior line of therapy (LOT), including patients with functional high-risk (FHR) multiple myeloma (Press release, Johnson & Johnson, JUN 3, 2024, View Source [SID1234644038]). FHR was defined as progressive disease within 18 months after receiving autologous stem cell transplant (ASCT) or the start of initial frontline therapy in patients with no ASCT.1 These data were featured as an oral presentation at the 2024 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting (Abstract #7504) and will also be shared at the 2024 European Hematology Association (EHA) (Free EHA Whitepaper) Congress (Abstract #P959).1,2
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
Data from the CARTITUDE-4 study supported the recent U.S. FDA approval of CARVYKTI, the first and only B-cell maturation antigen (BCMA)-targeted therapy approved for the treatment of patients with relapsed/refractory multiple myeloma as early as after first relapse.
A Phase 3 CARTITUDE-4 subgroup analysis included 136 patients (CARVYKTI, n=68; standard therapies, n=68) who received one prior LOT, including a proteasome inhibitor (PI) and an immunomodulatory agent (IMiD), and were lenalidomide-refractory.1 After a median follow-up of 16 months (range, 0.1-27), median PFS was not reached (NR) (95 percent Confidence Interval [CI]; not estimable [NE]-NE) among patients who received CARVYKTI compared to 17 months (95 percent CI, 11-NE) for the control arm as a second-line treatment (hazard ratio [HR]=0.35 [95 percent CI, 0.2-0.7; P=.0007]).1
In an additional subgroup analysis of 79 patients with FHR multiple myeloma (CARVYKTI, n=40; standard therapies, n=39) median PFS was NR [18-NE] with CARVYKTI versus 12 months (8-NE) with standard therapies (HR=0.27 [95 percent CI, 0.1-0.6; P=.0006]).1 Patients treated with CARVYKTI had deeper overall response rates (88 percent; 80 percent), complete response (CR) or better (68 percent; 39 percent), minimal residual disease (MRD) negativity (65 percent; ten percent), and longer median duration of response (mDOR) (NR [16-NE]; 16 [8-NE]) compared to those treated with standard therapies.1
"Patients with functional high-risk myeloma whose disease progressed during the first 18 months of initial myeloma therapy are known to have poor prognosis, yet they have not been well represented in any clinical trial," said Luciano J. Costa, M.D., Ph.D., Professor of Medicine and Director of the Multiple Myeloma Program, University of Alabama at Birmingham, and principal study investigator.* "This subset analysis of CARTITUDE-4 provides strong evidence that these patients greatly benefit from cilta-cel and will help healthcare professionals better understand the potential of this therapy."
The proportion of patients with grade 3 or higher treatment-emergent adverse events (TEAEs) was comparable among patients who received CARVYKTI versus standard therapies as second-line treatment (96 percent, 96 percent) and those with one prior LOT and FHR multiple myeloma (100 percent, 97 percent), respectively.1 Overall, 11 patients in the CARVYKTI one prior LOT subgroup and 11 patients in the standard therapies one prior LOT subgroup died.1 Of patients with FHR multiple myeloma, seven patients from the CARVYKTI arm and nine who received standard therapies died.1 Of the seven deaths in patients with one prior LOT and FHR multiple myeloma, two did not receive CARVYKTI as study treatment and three received CARVYKTI as subsequent therapy.1
"Many patients with FHR multiple myeloma from the CARTITUDE-4 subgroup analysis experienced deep and durable responses following the single-infusion of CARVYKTI, further supporting the potential to treat a broader patient population," said Jordan Schecter, M.D., Vice President, Disease Area Leader, Multiple Myeloma, at Johnson & Johnson Innovative Medicine. "At Johnson & Johnson, we aspire to eliminate cancer and remain steadfast in our commitment to realizing the full potential of CARVYKTI to improve outcomes for patients."
CARTITUDE-2: Cilta-cel results in patients with suboptimal response to frontline autologous stem cell transplant ± lenalidomide maintenance (Abstract #7505)
Results from Cohort D of the CARTITUDE-2 study demonstrated deep and durable responses following a single infusion of cilta-cel with or without lenalidomide maintenance.3 This cohort evaluated patients who had a suboptimal response after ASCT frontline therapy.3 These data were presented as an oral presentation at the 2024 ASCO (Free ASCO Whitepaper) Annual Meeting (Abstract #7505).3
At a median follow-up of 22 months, patients treated with cilta-cel (n=17) demonstrated a 94 percent overall response rate, with 94 percent also achieving a CR or better.3 Of the 15 MRD-evaluable patients, 80 percent achieved MRD negativity at 10–5.3 The mDOR was NR.3 Eighteen-month PFS and OS rates were 94 percent each.3 Patients in Cohort D had robust CAR-T expansion, but numerically shorter persistence compared to patients with lenalidomide-refractory multiple myeloma and one to three prior LOT (CARTITUDE-4) and heavily pretreated patients (CARTITUDE-1).3
All patients had grade 3 or 4 TEAEs including any grade neutropenia (94 percent), lymphopenia (65 percent), thrombocytopenia (47 percent), leukopenia (41 percent), infections (71 percent), or cytokine release syndrome (CRS) (82 percent; median onset of eight days).3 One patient had a secondary malignancy of grade 3 myelodysplastic syndromes (MDS). No cases of movement and neurocognitive treatment-emergent (MNT) AEs/parkinsonism were observed.3
About CARTITUDE-4
CARTITUDE-4 (NCT04181827) is the first international, randomized, open-label Phase 3 study evaluating the efficacy and safety of cilta-cel versus pomalidomide, bortezomib and dexamethasone (PVd) or daratumumab, pomalidomide and dexamethasone (DPd) in adult patients with relapsed and lenalidomide-refractory multiple myeloma who received one to three prior lines of therapy.4 Results were presented at the 2023 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting and published in The New England Journal of Medicine.
About CARTITUDE-2
CARTITUDE-2 (NCT04133636) is an ongoing, multi-cohort Phase 2 study evaluating the safety and efficacy of cilta-cel in patients with multiple myeloma.5 Cohort D evaluates cilta-cel with lenalidomide maintenance in patients who achieved less than complete response (CR) after autologous stem cell transplant (ASCT) frontline therapy.
About CARVYKTI (ciltacabtagene autoleucel; cilta-cel)
CARVYKTI (cilta-cel) received U.S. Food and Drug Administration approval in February 2022 for the treatment of adults with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 monoclonal antibody. In April 2024, CARVYKTI was approved in the U.S. for the second-line treatment of adult patients with relapsed or refractory myeloma who have received at least one prior line of therapy including a proteasome inhibitor, an immunomodulatory agent, and who are refractory to lenalidomide, following a unanimous (11 to 0) FDA Oncologic Drugs Advisory Committee (ODAC) recommendation in support of this new indication. In April 2024, the European Medicines Agency (EMA) approved a Type II variation for CARVYKTI for the treatment of adults with relapsed and refractory multiple myeloma who have received at least one prior therapy, including an immunomodulatory agent and a proteasome inhibitor, have demonstrated disease progression on the last therapy, and are refractory to lenalidomide. In September 2022, Japan’s Ministry of Health, Labour and Welfare (MHLW) approved CARVYKTI for the treatment of adults with relapsed or refractory multiple myeloma in patients that have no history of CAR-positive T cell infusion therapy targeting BCMA and who have received three or more lines of therapies, including an immunomodulatory agent, a proteasome inhibitor and an anti-CD38 monoclonal antibody, and in whom multiple myeloma has not responded to or has relapsed following the most recent therapy.
CARVYKTI is a BCMA-directed, genetically modified autologous T-cell immunotherapy, which involves reprogramming a patient’s own T-cells with a transgene encoding chimeric antigen receptor (CAR) that directs the CAR-positive T cells to eliminate cells that express BCMA. BCMA is primarily expressed on the surface of malignant multiple myeloma B-lineage cells, as well as late-stage B cells and plasma cells. The CARVYKTI CAR protein features two BCMA-targeting single domains designed to confer high avidity against human BCMA. Upon binding to BCMA-expressing cells, the CAR promotes T-cell activation, expansion, and elimination of target cells.
In December 2017, Janssen Biotech, Inc., a Johnson & Johnson company, entered into an exclusive worldwide license and collaboration agreement with Legend Biotech USA, Inc. to develop and commercialize CARVYKTI.
For more information, visit www.CARVYKTI.com.
About Multiple Myeloma
Multiple myeloma is an incurable blood cancer that affects a type of white blood cell called plasma cells, which are found in the bone marrow.6 In multiple myeloma, these plasma cells proliferate and spread rapidly and replace normal cells in the bone marrow with tumors.7 Multiple myeloma is the third most common blood cancer worldwide and remains an incurable disease.8 In 2024, it was estimated that more than 35,000 people will be diagnosed with multiple myeloma in the U.S. and more than 12,000 people would die from the disease.9 People living with multiple myeloma have a 5-year survival rate of 59.8 percent.10 While some people diagnosed with multiple myeloma initially have no symptoms, most patients are diagnosed due to symptoms that can include bone fracture or pain, low red blood cell counts, tiredness, high calcium levels and kidney problems or infections.11,12
CARVYKTI IMPORTANT SAFETY INFORMATION
INDICATIONS AND USAGE
CARVYKTI (ciltacabtagene autoleucel) is a B-cell maturation antigen (BCMA)-directed genetically modified autologous T cell immunotherapy indicated for the treatment of adult patients with relapsed or refractory multiple myeloma, who have received at least 1 prior line of therapy, including a proteasome inhibitor and an immunomodulatory agent, and are refractory to lenalidomide.
IMPORTANT SAFETY INFORMATION
WARNING: CYTOKINE RELEASE SYNDROME, NEUROLOGIC TOXICITIES, HLH/MAS, PROLONGED and RECURRENT
CYTOPENIA, and SECONDARY HEMATOLOGICAL MALIGNANCIES
Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients following treatment
with CARVYKTI. Do not administer CARVYKTI to patients with active infection or inflammatory disorders. Treat severe or
life-threatening CRS with tocilizumab or tocilizumab and corticosteroids.
Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS), which may be fatal or life-threatening, occurred
following treatment with CARVYKTI, including before CRS onset, concurrently with CRS, after CRS resolution, or in the
absence of CRS. Monitor for neurologic events after treatment with CARVYKTI. Provide supportive care and/or
corticosteroids as needed.
Parkinsonism and Guillain-Barré syndrome (GBS) and their associated complications resulting in fatal or life-threatening
reactions have occurred following treatment with CARVYKTI.
Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome (HLH/MAS), including fatal and life-threatening
reactions, occurred in patients following treatment with CARVYKTI. HLH/MAS can occur with CRS or neurologic toxicities.
Prolonged and/or recurrent cytopenias with bleeding and infection and requirement for stem cell transplantation for
hematopoietic recovery occurred following treatment with CARVYKTI.
Secondary hematological malignancies, including myelodysplastic syndrome and acute myeloid leukemia, have occurred
in patients following treatment with CARVYKTI. T-cell malignancies have occurred following treatment of hematologic
malignancies with BCMA- and CD19-directed genetically modified autologous T-cell immunotherapies, including
CARVYKTI.
CARVYKTI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called
the CARVYKTI REMS Program.
WARNINGS AND PRECAUTIONS
Increased early mortality – In CARTITUDE-4, a (1:1) randomized controlled trial, there was a numerically higher percentage of early deaths in patients randomized to the CARVYKTI treatment arm compared to the control arm. Among patients with deaths occurring within the first 10 months from randomization, a greater proportion (29/208; 14%) occurred in the CARVYKTI arm compared to (25/211; 12%) in the control arm. Of the 29 deaths that occurred in the CARVYKTI arm within the first 10 months of randomization, 10 deaths occurred prior to CARVYKTI infusion, and 19 deaths occurred after CARVYKTI infusion. Of the 10 deaths that occurred prior to CARVYKTI infusion, all occurred due to disease progression, and none occurred due to adverse events. Of the 19 deaths that occurred after CARVYKTI infusion, 3 occurred due to disease progression, and 16 occurred due to adverse events. The most common adverse events were due to infection (n=12).
Cytokine release syndrome (CRS), including fatal or life-threatening reactions, occurred following treatment with CARVYKTI. Among patients receiving CARVYKTI for RRMM in the CARTITUDE-1 & 4 studies (N=285), CRS occurred in 84% (238/285), including ≥Grade 3 CRS (ASCT 2019) in 4% (11/285) of patients. Median time to onset of CRS, any grade, was 7 days (range: 1 to 23 days). CRS resolved in 82% with a median duration of 4 days (range: 1 to 97 days). The most common manifestations of CRS in all patients combined (≥10%) included fever (84%), hypotension (29%) and aspartate aminotransferase increased (11%). Serious events that may be associated with CRS include pyrexia, hemophagocytic lymphohistiocytosis, respiratory failure, disseminated intravascular coagulation, capillary leak syndrome, and supraventricular and ventricular tachycardia. CRS occurred in 78% of patients in CARTITUDE-4 (3% Grade 3 to 4) and in 95% of patients in CARTITUDE-1 (4% Grade 3 to 4).
Identify CRS based on clinical presentation. Evaluate for and treat other causes of fever, hypoxia, and hypotension. CRS has been reported to be associated with findings of HLH/MAS, and the physiology of the syndromes may overlap. HLH/MAS is a potentially life-threatening condition. In patients with progressive symptoms of CRS or refractory CRS despite treatment, evaluate for evidence of HLH/MAS.
Ensure that a minimum of two doses of tocilizumab are available prior to infusion of CARVYKTI.
Of the 285 patients who received CARVYKTI in clinical trials, 53% (150/285) patients received tocilizumab; 35% (100/285) received a single dose, while 18% (50/285) received more than 1 dose of tocilizumab. Overall, 14% (39/285) of patients received at least one dose of corticosteroids for treatment of CRS.
Monitor patients at least daily for 10 days following CARVYKTI infusion at a REMS-certified healthcare facility for signs and symptoms of CRS. Monitor patients for signs or symptoms of CRS for at least 4 weeks after infusion. At the first sign of CRS, immediately institute treatment with supportive care, tocilizumab, or tocilizumab and corticosteroids.
Counsel patients to seek immediate medical attention should signs or symptoms of CRS occur at any time.
Neurologic toxicities, which may be severe, life-threatening, or fatal, occurred following treatment with CARVYKTI. Neurologic toxicities included ICANS, neurologic toxicity with signs and symptoms of parkinsonism, GBS, immune mediated myelitis, peripheral neuropathies, and cranial nerve palsies. Counsel patients on the signs and symptoms of these neurologic toxicities, and on the delayed nature of onset of some of these toxicities. Instruct patients to seek immediate medical attention for further assessment and management if signs or symptoms of any of these neurologic toxicities occur at any time.
Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies for RRMM, one or more neurologic toxicities occurred in 24% (69/285), including ≥Grade 3 cases in 7% (19/285) of patients. Median time to onset was 10 days (range: 1 to 101) with 63/69 (91%) of cases developing by 30 days. Neurologic toxicities resolved in 72% (50/69) of patients with a median duration to resolution of 23 days (range: 1 to 544). Of patients developing neurotoxicity, 96% (66/69) also developed CRS. Subtypes of neurologic toxicities included ICANS in 13%, peripheral neuropathy in 7%, cranial nerve palsy in 7%, parkinsonism in 3%, and immune mediated myelitis in 0.4% of the patients.
Immune Effector Cell-associated Neurotoxicity Syndrome (ICANS): Patients receiving CARVYKTI may experience fatal or life-threatening ICANS following treatment with CARVYKTI, including before CRS onset, concurrently with CRS, after CRS resolution, or in the absence of CRS.
Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, ICANS occurred in 13% (36/285), including Grade ≥3 in 2% (6/285) of the patients. Median time to onset of ICANS was 8 days (range: 1 to 28 days). ICANS resolved in 30 of 36 (83%) of patients with a median time to resolution of 3 days (range: 1 to 143 days). Median duration of ICANS was 6 days (range: 1 to 1229 days) in all patients including those with ongoing neurologic events at the time of death or data cut off. Of patients with ICANS 97% (35/36) had CRS. The onset of ICANS occurred during CRS in 69% of patients, before and after the onset of CRS in 14% of patients respectively.
Immune Effector Cell-associated Neurotoxicity Syndrome occurred in 7% of patients in CARTITUDE-4 (0.5% Grade 3) and in 23% of patients in CARTITUDE-1 (3% Grade 3). The most frequent ≥2% manifestations of ICANS included encephalopathy (12%), aphasia (4%), headache (3%), motor dysfunction (3%), ataxia (2%) and sleep disorder (2%).
Monitor patients at least daily for 10 days following CARVYKTI infusion at the REMS-certified healthcare facility for signs and symptoms of ICANS. Rule out other causes of ICANS symptoms. Monitor patients for signs or symptoms of ICANS for at least 4 weeks after infusion and treat promptly. Neurologic toxicity should be managed with supportive care and/or corticosteroids as needed.
Parkinsonism: Neurologic toxicity with parkinsonism has been reported in clinical trials of CARVYKTI. Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, parkinsonism occurred in 3% (8/285), including Grade ≥ 3 in 2% (5/285) of the patients. Median time to onset of parkinsonism was 56 days (range: 14 to 914 days). Parkinsonism resolved in 1 of 8 (13%) of patients with a median time to resolution of 523 days. Median duration of parkinsonism was 243.5 days (range: 62 to 720 days) in all patients including those with ongoing neurologic events at the time of death or data cut off. The onset of parkinsonism occurred after CRS for all patients and after ICANS for 6 patients.
Parkinsonism occurred in 1% of patients in CARTITUDE-4 (no Grade 3 to 4) and in 6% of patients in CARTITUDE-1 (4% Grade 3 to 4).
Manifestations of parkinsonism included movement disorders, cognitive impairment, and personality changes. Monitor patients for signs and symptoms of parkinsonism that may be delayed in onset and managed with supportive care measures. There is limited efficacy information with medications used for the treatment of Parkinson’s disease for the improvement or resolution of parkinsonism symptoms following CARVYKTI treatment.
Guillain-Barré syndrome: A fatal outcome following GBS occurred following treatment with CARVYKTI despite treatment with intravenous immunoglobulins. Symptoms reported include those consistent with Miller-Fisher variant of GBS, encephalopathy, motor weakness, speech disturbances, and polyradiculoneuritis.
Monitor for GBS. Evaluate patients presenting with peripheral neuropathy for GBS. Consider treatment of GBS with supportive care measures and in conjunction with immunoglobulins and plasma exchange, depending on severity of GBS.
Immune mediated myelitis: Grade 3 myelitis occurred 25 days following treatment with CARVYKTI in CARTITUDE-4 in a patient who received CARVYKTI as subsequent therapy. Symptoms reported included hypoesthesia of the lower extremities and the lower abdomen with impaired sphincter control. Symptoms improved with the use of corticosteroids and intravenous immune globulin. Myelitis was ongoing at the time of death from other cause.
Peripheral neuropathy occurred following treatment with CARVYKTI. Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, peripheral neuropathy occurred in 7% (21/285), including Grade ≥3 in 1% (3/285) of the patients. Median time to onset of peripheral neuropathy was 57 days (range: 1 to 914 days). Peripheral neuropathy resolved in 11 of 21 (52%) of patients with a median time to resolution of 58 days (range: 1 to 215 days). Median duration of peripheral neuropathy was 149.5 days (range: 1 to 692 days) in all patients including those with ongoing neurologic events at the time of death or data cut off.
Peripheral neuropathies occurred in 7% of patients in CARTITUDE-4 (0.5% Grade 3 to 4) and in 7% of patients in CARTITUDE-1 (2% Grade 3 to 4). Monitor patients for signs and symptoms of peripheral neuropathies. Patients who experience peripheral neuropathy may also experience cranial nerve palsies or GBS.
Cranial nerve palsies occurred following treatment with CARVYKTI. Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, cranial nerve palsies occurred in 7% (19/285), including Grade ≥3 in 1% (1/285) of the patients. Median time to onset of cranial nerve palsies was 21 days (range: 17 to 101 days). Cranial nerve palsies resolved in 17 of 19 (89%) of patients with a median time to resolution of 66 days (range: 1 to 209 days). Median duration of cranial nerve palsies was 70 days (range: 1 to 262 days) in all patients including those with ongoing neurologic events at the time of death or data cut off. Cranial nerve palsies occurred in 9% of patients in CARTITUDE-4 (1% Grade 3 to 4) and in 3% of patients in CARTITUDE-1 (1% Grade 3 to 4).
The most frequent cranial nerve affected was the 7th cranial nerve. Additionally, cranial nerves III, V, and VI have been reported to be affected.
Monitor patients for signs and symptoms of cranial nerve palsies. Consider management with systemic corticosteroids, depending on the severity and progression of signs and symptoms.
Hemophagocytic Lymphohistiocytosis (HLH)/Macrophage Activation Syndrome (MAS): Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, HLH/MAS occurred in 1% (3/285) of patients. All events of HLH/MAS had onset within 99 days of receiving CARVYKTI, with a median onset of 10 days (range: 8 to 99 days) and all occurred in the setting of ongoing or worsening CRS. The manifestations of HLH/MAS included hyperferritinemia, hypotension, hypoxia with diffuse alveolar damage, coagulopathy and hemorrhage, cytopenia and multi-organ dysfunction, including renal dysfunction and respiratory failure.
Patients who develop HLH/MAS have an increased risk of severe bleeding. Monitor hematologic parameters in patients with HLH/MAS and transfuse per institutional guidelines. Fatal cases of HLH/MAS occurred following treatment with CARVYKTI.
HLH is a life-threatening condition with a high mortality rate if not recognized and treated early. Treatment of HLH/MAS should be administered per institutional standards.
CARVYKTI REMS: Because of the risk of CRS and neurologic toxicities, CARVYKTI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the CARVYKTI REMS.
Further information is available at View Source or 1-844-672-0067.
Prolonged and Recurrent Cytopenias: Patients may exhibit prolonged and recurrent cytopenias following lymphodepleting chemotherapy and CARVYKTI infusion.
Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, Grade 3 or higher cytopenias not resolved by day 30 following CARVYKTI infusion occurred in 62% (176/285) of the patients and included thrombocytopenia 33% (94/285), neutropenia 27% (76/285), lymphopenia 24% (67/285) and anemia 2% (6/285). After Day 60 following CARVYKTI infusion 22%, 20%, 5%, and 6% of patients had a recurrence of Grade 3 or 4 lymphopenia, neutropenia, thrombocytopenia, and anemia respectively, after initial recovery of their Grade 3 or 4 cytopenia. Seventy-seven percent (219/285) of patients had one, two or three or more recurrences of Grade 3 or 4 cytopenias after initial recovery of Grade 3 or 4 cytopenia. Sixteen and 25 patients had Grade 3 or 4 neutropenia and thrombocytopenia, respectively, at the time of death.
Monitor blood counts prior to and after CARVYKTI infusion. Manage cytopenias with growth factors and blood product transfusion support according to local institutional guidelines.
Infections: CARVYKTI should not be administered to patients with active infection or inflammatory disorders. Severe, life-threatening, or fatal infections, occurred in patients after CARVYKTI infusion.
Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, infections occurred in 57% (163/285), including ≥Grade 3 in 24% (69/285) of patients. Grade 3 or 4 infections with an unspecified pathogen occurred in 12%, viral infections in 6%, bacterial infections in 5%, and fungal infections in 1% of patients. Overall, 5% (13/285) of patients had Grade 5 infections, 2.5% of which were due to COVID-19. Patients treated with CARVYKTI had an increased rate of fatal COVID-19 infections compared to the standard therapy arm.
Monitor patients for signs and symptoms of infection before and after CARVYKTI infusion and treat patients appropriately. Administer prophylactic, pre-emptive and/or therapeutic antimicrobials according to the standard institutional guidelines. Febrile neutropenia was observed in 5% of patients after CARVYKTI infusion and may be concurrent with CRS. In the event of febrile neutropenia, evaluate for infection and manage with broad-spectrum antibiotics, fluids and other supportive care, as medically indicated. Counsel patients on the importance of prevention measures. Follow institutional guidelines for the vaccination and management of immunocompromised patients with COVID-19.
Viral Reactivation: Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure and death, can occur in patients with hypogammaglobulinemia. Perform screening for Cytomegalovirus (CMV), HBV, hepatitis C virus (HCV), and human immunodeficiency virus (HIV) or any other infectious agents if clinically indicated in accordance with clinical guidelines before collection of cells for manufacturing. Consider antiviral therapy to prevent viral reactivation per local institutional guidelines/clinical practice.
Hypogammaglobulinemia: can occur in patients receiving treatment with CARVYKTI. Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, hypogammaglobulinemia adverse event was reported in 36% (102/285) of patients; laboratory IgG levels fell below 500mg/dl after infusion in 93% (265/285) of patients. Hypogammaglobulinemia either as an adverse reaction or laboratory IgG level below 500mg/dl, after infusion occurred in 94% (267/285) of patients treated. Fifty six percent (161/285) of patients received intravenous immunoglobulin (IVIG) post CARVYKTI for either an adverse reaction or prophylaxis.
Monitor immunoglobulin levels after treatment with CARVYKTI and administer IVIG for IgG <400 mg/dL. Manage per local institutional guidelines, including infection precautions and antibiotic or antiviral prophylaxis.
Use of Live Vaccines: The safety of immunization with live viral vaccines during or following CARVYKTI treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during CARVYKTI treatment, and until immune recovery following treatment with CARVYKTI.
Hypersensitivity Reactions occurred following treatment with CARVYKTI. Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, hypersensitivity reactions occurred in 5% (13/285), all of which were ≤Grade 2. Manifestations of hypersensitivity reactions included flushing, chest discomfort, tachycardia, wheezing, tremor, burning sensation, non-cardiac chest pain, and pyrexia.
Serious hypersensitivity reactions, including anaphylaxis, may be due to the dimethyl sulfoxide (DMSO) in CARVYKTI. Patients should be carefully monitored for 2 hours after infusion for signs and symptoms of severe reaction. Treat promptly and manage patients appropriately according to the severity of the hypersensitivity reaction.
Secondary Malignancies: Patients treated with CARVYKTI may develop secondary malignancies. Among patients receiving CARVYKTI in the CARTITUDE-1 & 4 studies, myeloid neoplasms occurred in 5% (13/285) of patients (9 cases of myelodysplastic syndrome, 3 cases of acute myeloid leukemia, and 1 case of myelodysplastic syndrome followed by acute myeloid leukemia). The median time to onset of myeloid neoplasms was 447 days (range: 56 to 870 days) after treatment with CARVYKTI. Ten of these 13 patients died following the development of myeloid neoplasms; 2 of the 13 cases of myeloid neoplasm occurred after initiation of subsequent antimyeloma therapy. Cases of myelodysplastic syndrome and acute myeloid leukemia have also been reported in the post marketing setting. T-cell malignancies have occurred following treatment of hematologic malignancies with BCMA- and CD19-directed genetically modified autologous T-cell immunotherapies, including CARVYKTI. Mature T-cell malignancies, including CAR-positive tumors, may present as soon as weeks following infusions, and may include fatal outcomes.
Monitor life-long for secondary malignancies. In the event that a secondary malignancy occurs, contact Janssen Biotech, Inc. at 1-800-526-7736 for reporting and to obtain instructions on collection of patient samples.
Effects on Ability to Drive and Use Machines: Due to the potential for neurologic events, including altered mental status, seizures, neurocognitive decline or neuropathy, patients receiving CARVYKTI are at risk for altered or decreased consciousness or coordination in the 8 weeks following CARVYKTI infusion. Advise patients to refrain from driving and engaging in hazardous occupations or activities, such as operating heavy or potentially dangerous machinery during this initial period, and in the event of new onset of any neurologic toxicities.
ADVERSE REACTIONS
The most common nonlaboratory adverse reactions (incidence greater than 20%) are pyrexia, cytokine release syndrome, hypogammaglobulinemia, hypotension, musculoskeletal pain, fatigue, infections-pathogen unspecified, cough, chills, diarrhea, nausea, encephalopathy, decreased appetite, upper respiratory tract infection, headache, tachycardia, dizziness, dyspnea, edema, viral infections, coagulopathy, constipation, and vomiting. The most common Grade 3 or 4 laboratory adverse reactions (incidence greater than or equal to 50%) include lymphopenia, neutropenia, white blood cell decreased, thrombocytopenia, and anemia.
Please read full Prescribing Information, including Boxed Warning, for CARVYKTI.