Bristol Myers Squibb’s First Disclosures and New Data at ASH 2023 Highlight Company’s Leadership and Progress in Cell Therapy, Targeted Protein Degradation and Novel Approaches in Hematology

On November 2, 2023 Bristol Myers Squibb (NYSE: BMY) reported the presentation of research across its hematology and cell therapy portfolio and pipeline at the 65th American Society of Hematology (ASH) (Free ASH Whitepaper) Annual Meeting and Exposition, which will take place in San Diego, California from December 9 to 12, 2023 (Press release, Bristol-Myers Squibb, NOV 2, 2023, View Source [SID1234636741]). Results from 73 data disclosures across company-sponsored studies will be featured, including 22 oral presentations, showcasing BMS’ commitment to delivering transformative medicines that help more patients living with blood disorders.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"At this year’s ASH (Free ASH Whitepaper) meeting, we look forward to highlighting our continued commitment to unlocking the full promise of cell therapy and our differentiated research platforms, demonstrating the clinical and real-world value of our medicines through our scientific innovation," said Samit Hirawat, M.D., executive vice president, chief medical officer, Global Drug Development, Bristol Myers Squibb. "New data from our diverse portfolio, spanning multiple platforms and combinations, reinforce our pursuit of the next wave of hematology advances across a spectrum of blood diseases with the highest unmet needs."

Key data being presented by Bristol Myers Squibb and its partners at the 2023 ASH (Free ASH Whitepaper) Annual Meeting and Exposition include:

Cell Therapy

First disclosure of efficacy and safety data from the primary analysis of the Phase 2 TRANSCEND FL study of Breyanzi (lisocabtagene maraleucel; liso-cel) for the treatment of patients with high-risk relapsed or refractory follicular lymphoma in the second-line setting. Patient-reported outcomes and health-related quality of life data from this study will also be presented.
First disclosure of Center for International Blood and Marrow Transplant Research registry data showcasing safety and efficacy of Breyanzi in relapsed or refractory large B-cell lymphoma (LBCL) when used in the real world.
Multiple analyses from the Phase 3 KarMMa-3 study evaluating Abecma (idecabtagene vicleucel) in patients with triple-class exposed relapsed and refractory multiple myeloma, including final progression-free survival data, interim overall survival data, safety profile characterization and patient-reported outcomes from extended follow-up.
Updated safety and efficacy results from the Phase 1 study of GPRC5D CAR T (BMS-986393/CC-95266) in patients with relapsed or refractory multiple myeloma, including in patients with prior BCMA-directed therapy.
Targeted Protein Degradation

First results from the Phase 1/2 CC-92480 MM-002 study evaluating CELMoDTM agent mezigdomide with dexamethasone and daratumumab or elotuzumab in patients with relapsed or refractory multiple myeloma.
Updated results from the dose-escalation and dose-expansion components of the Phase 1 CC-220-DLBCL-001 study, evaluating potential first-in-class CELMoD agent golcadomide in combination with R-CHOP in previously untreated diffuse LBCL.
Translational data describing a potential mechanism of reversal of T-cell exhaustion by CELMoD agents, highlighting the potential for CELMoD agents to enhance T-cell redirecting therapies.
Additional Novel Treatment Modalities

Multiple presentations from the Phase 3 COMMANDS study of Reblozyl(luspatercept-aamt) in the treatment of anemia in patients with lower-risk myelodysplastic syndromes who are erythropoiesis stimulating agent-naïve, including primary analysis data, patient-reported outcomes and mutational analysis.
Updated safety and efficacy data for potential best-in-class BET inhibitor BMS-986158 in combination with ruxolitinib or Inrebic (fedratinib) in first- and second-line myelofibrosis.
Updated safety and efficacy data for subcutaneous 2+1 T-cell engager alnuctamab in heavily pretreated multiple myeloma from the Phase 1 CC-93269-MM-001 study.
You can find additional information about BMS’ presence at the meeting on the ASH (Free ASH Whitepaper) website.

Selected Bristol Myers Squibb studies at the 65th ASH (Free ASH Whitepaper) Annual Meeting and Exposition include:

Abstract Title

Author

Presentation
Type/#

Session
Title

Session
Date/Time
(PST)

Beta Thalassemia

Improvement of Underlying Disease Pathophysiology of Ineffective Erythropoiesis in Non-Transfusion-Dependent (NTD) Patients with Beta-Thalassemia Receiving Luspatercept: Biomarker Analysis from the BEYOND Trial

Manuel Ugidos Guerrero

Poster
Presentation
#1104

112. Thalassemia and Globin Gene Regulation: Poster III

Saturday,
December 9,
5:30 – 7:30 PM

Real-World Characteristics, Treatment Utilization, and Transfusion Burden in Patients with β-Thalassemia Initiating Luspatercept: A US Cohort Study

Sujit Sheth

Poster
Presentation
#2476

112. Thalassemia and Globin Gene Regulation: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Durable Symptom Improvement for Patients with Non-Transfusion Dependent Thalassemia Treated with Luspatercept: Patient-Reported Outcomes from the BEYOND Study

Khaled Musallam

Poster
Presentation
#2474

112. Thalassemia and Globin Gene Regulation: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Efficacy and Safety of Luspatercept in Patients Enrolled in the BELIEVE Trial: Data from the Phase 3b Long-Term Rollover Study

Maria Cappellini

Poster
Presentation
#3849

112. Thalassemia and Globin Gene Regulation: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Luspatercept for the Treatment of Anemia in Non-Transfusion-Dependent β-Thalassemia: Final Safety and Efficacy Data from the BEYOND Trial

Ali Taher

Poster
Presentation
#3847

112. Thalassemia and Globin Gene Regulation: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Efficacy and Safety of Luspatercept in Patients with HbE/β‑Thalassemia from the BELIEVE Study: a Subgroup Analysis

Kevin Kuo

Poster
Presentation
#3848

112. Thalassemia and Globin Gene Regulation: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Leukemia

Lisocabtagene Maraleucel (liso-cel) in R/R CLL/SLL: 24-Month Median Follow-up of TRANSCEND CLL 004

Tanya Siddiqi

Oral
Presentation
#330

642. Chronic Lymphocytic Leukemia: Clinical and Epidemiological: New Inhibitors and Cellular Therapies for Treatment of Relapsed CLL

Saturday,
December 9,
5:15 PM

The Total Lifetime Cost of Treating Patients (Pts) with CLL in the United States (US)

Farrukh Awan

Poster
Presentation
#2330

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Undetectable MRD Status in Patients with R/R CLL/SLL with Stable Disease After Lisocabtagene Maraleucel Treatment: Exploratory Analysis of the TRANSCEND CLL 004 Study

Eniko Papp

Poster
Presentation
#3263

641. Chronic Lymphocytic Leukemias: Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Lymphoma

Multicenter, Real-world Study in Patients with R/R Large B-Cell Lymphoma (LBCL) Who Received Lisocabtagene Maraleucel (liso-cel) in the United States (US)

Jennifer Crombie

Oral
Presentation
#104

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Cellular Therapy for B Cell Lymphomas: Prospective Clinical Trials and Real World Data

Saturday,
December 9,
9:45 AM

Lisocabtagene Maraleucel as Second-Line Therapy for R/R Large B-Cell Lymphoma in Patients Not Intended for Hematopoietic Stem Cell Transplant: Final Analysis of the Phase 2 PILOT Study

Alison Sehgal

Oral
Presentation
#105

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Cellular Therapy for B Cell Lymphomas: Prospective Clinical Trials and Real World Data

Saturday,
December 9,
10:00 AM

Circulating Tumor DNA Dynamics as Early Outcome Predictors for Lisocabtagene Maraleucel as Second-Line Therapy for Large B-Cell Lymphoma from the Phase 3 TRANSFORM Study

Lara Stepan

Oral
Presentation
#225

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Translational Data and Prognostic Factors

Saturday,
December 9,
2:30 PM

Pharmacodynamic Biomarkers and CtDNA Support the Mechanism of Action and Clinical Efficacy of Golcadomide (CC-99282) Combined with R-CHOP in Previously Untreated Aggressive B-Cell Lymphoma

Mark Kaplan

Poster
Presentation
#1631

621. Lymphomas: Translational – Molecular and Genetic: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Postinfusion Monitoring Health Care Resource Utilization and Costs by Site of Care Among Inpatients and Outpatients with Relapsed or Refractory Large B-Cell Lymphoma who Received Second-Line Treatment with Lisocabtagene Maraleucel in the TRANSFORM and PILOT Clinical Trials

November McGarvey

Poster
Presentation
#2340

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Matching-Adjusted Indirect Comparison (MAIC) of Efficacy and Safety of Lisocabtagene Maraleucel (liso-cel) and Mosunetuzumab for the Treatment (Tx) of Third Line or Later (3L+) Relapsed or Refractory (R/R) Follicular Lymphoma (FL)

Loretta Nastoupil

Poster
Presentation
#2338

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Patient-Reported Outcomes from the MCL Cohort of the Phase 1, Seamless Design TRANSCEND NHL 001 Study of Lisocabtagene Maraleucel in Patients with R/R B-Cell NHL

Michael Wang

Oral
Presentation
#667

905. Outcomes Research – Lymphoid Malignancies: Patient Reported Outcomes in Hematological Malignancies

Sunday,
December 10,
4:30 PM

TRANSCEND FL: Phase 2 Study Primary Analysis Results of Lisocabtagene Maraleucel in Patients with Second-Line High-risk Relapsed or Refractory Follicular Lymphoma

Franck Morschhauser

Oral
Presentation
#602

623. Mantle Cell, Follicular, and Other Indolent B Cell Lymphomas: Clinical and Epidemiological: Immunotherapy

Sunday,
December 10,
4:45 PM

Patient-Reported Outcomes from the Phase 2 TRANSCEND FL Study of Lisocabtagene Maraleucel in Patients with Relapsed or Refractory Indolent B-Cell Non-Hodgkin Lymphoma

Guillaume Cartron

Oral
Presentation
#668

905. Outcomes Research – Lymphoid Malignancies: Patient Reported Outcomes in Hematological Malignancies

Sunday,
December 10,
4:45 PM

Lisocabtagene Maraleucel (liso-cel) in Patients (Pts) with R/R MCL: Subgroup Analyses in Pts with High-Risk Disease Features from the MCL Cohort of the TRANSCEND NHL 001 Study

Maria Lia Palomba

Poster
Presentation
#3505

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Cytokine Release Syndrome and Neurological Event Management Resource Use and Costs Among Patients with Relapsed or Refractory Large B-Cell Lymphoma Who Received Second-Line Lisocabtagene Maraleucel Treatment in TRANSFORM and PILOT

November McGarvey

Poster
Presentation
#3717

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Golcadomide (GOLCA; CC-99282), a Novel CELMoD Agent, Plus R-CHOP in Patients (pts) with Previously Untreated Aggressive B-Cell Lymphoma (a-BCL): Safety and Efficacy Results from Phase 1b Dose Expansion

Marc Hoffmann

Poster
Presentation
#4459

626. Aggressive Lymphomas: Prospective Therapeutic Trials: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Efficacy and Safety of Golcadomide, a Novel Cereblon E3 Ligase Modulator (CELMoD) Agent, Combined with Rituximab in a Phase 1/2 Open-Label Study of Patients with Relapsed/Refractory Non-Hodgkin Lymphoma

Julio Chavez

Poster
Presentation
#4496

627. Aggressive Lymphomas: Clinical and Epidemiological: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Estimation of Postinfusion Resource Use and Total Costs of Care for Patients with R/R Follicular Lymphoma (FL) Receiving Lisocabtagene Maraleucel (liso-cel) in the TRANSCEND FL Study

Ashley Saunders

Poster
Presentation
#5084

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Multiple Myeloma

Effects of Idecabtagene Vicleucel (Ide-Cel) Versus Standard Regimens on Health-Related Quality of Life (HRQoL) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM) Who Had Received 2–4 Prior Regimens: Updated Results from the Phase 3 KarMMa-3 Trial

Michele Delforge

Oral
Presentation
#96

652. Multiple Myeloma: Clinical and Epidemiological: T Cell Redirecting Therapy Outcomes a nd Associated Complications

Saturday,
December 9,
10:45 AM

BMS-986393 (CC-95266), a G protein–Coupled Receptor Class C Group 5 Member D (GPRC5D)–Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy for Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 Study

Susan Bal

Oral
Presentation
#219

704. Cellular Immunotherapies: Early Phase and Investigational Therapies: Expanding Disease Targets for CAR-T Cell Therapies

Saturday,
December 9,
2:30 PM

Mezigdomide reverses T-Cell exhaustion through degradation of Aiolos/Ikaros and Reinvigoration of cytokine production pathways

Hsiling Chiu

Oral
Presentation
#335

651. Multiple Myeloma and Plasma Cell Dyscrasias: Basic and Translational: Characterization of the MM and the Tumor Microenvironment

Saturday,
December 9,
5:00 PM

Alnuctamab (ALNUC; BMS-986349; CC-93269), a 2+1 B-Cell Maturation Antigen (BCMA) × CD3 T-Cell Engager (TCE), Administered Subcutaneously (SC) in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 First‑in‑Human Clinical Study

Noffar Bar

Poster
Presentation
#2011

653. Multiple Myeloma: Prospective Therapeutic Trials: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Efficacy and Safety of Idecabtagene Vicleucel (ide-cel) in Patients with Clinical High-Risk Newly Diagnosed Multiple Myeloma (MM) with an Inadequate Response to Frontline Autologous Stem Cell Transplantation (ASCT): KarMMa-2 Cohort 2c Extended Follow-up

Madhav Dhodapkar

Poster
Presentation
#2101

704. Cellular Immunotherapies: Early Phase and Investigational Therapies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Patient (pt) Experiences of Receiving Idecabtagene Vicleucel (Ide-Cel, bb2121) Versus Standard (Std) Regimens for the Treatment (Tx) of Relapsed/Refractory Multiple Myeloma (RRMM) in the Randomized, Controlled KarMMa-3 Clinical Trial: Analysis of Longitudinal Qualitative Interviews

Paula Rodriguez Otero

Poster
Presentation
#2385

905. Outcomes Research – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Preclinical and Translational Biomarker Analyses to Inform Clinical Development of Mezigdomide (CC-92480) in Combination with Dexamethasone and Daratumumab in Multiple Myeloma

Tracy Chow

Poster
Presentation
#3318

651. Multiple Myeloma and Plasma Cell Dyscrasias: Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Healthcare Resource Utilization and Economic Burden of Cytokine Release Syndrome and Neurotoxicity in Patients with Relapsed and Refractory Multiple Myeloma (RRMM) Receiving Idecabtagene Vicleucel in Earlier-Line Settings in the KarMMa-3 Clinical Trial

Sikander Ailawadhi

Poster
Presentation
#3712

905. Outcomes Research—Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Clinical Outcomes in Real-World Patients (RW) with Triple-Class Exposed (TCE) Relapsed/Refractory Multiple Myeloma (RRMM): A Retrospective Study using Electronic Health Records from Flatiron Health and COTA Vantage Databases

Hans C Lee

Poster
Presentation
#3775

905. Outcomes Research—Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Treatment Patterns and Outcomes for Patients with Newly Diagnosed Multiple Myeloma Post-Stem Cell Transplantation Who Received Lenalidomide As First Line Maintenance Therapy (PREAMBLE)

Ravi Vij

Poster
Presentation
#3786

905. Outcomes Research—Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Effects of Idecabtagene Vicleucel (Ide-Cel) Versus Standard Regimens on Health-Related Quality of Life (HRQoL) in Patients with Triple-Class-Exposed (TCE) Relapsed/Refractory Multiple Myeloma (RRMM) Who Received at Least 3 Lines of Prior Antimyeloma Regimens in the KarMMa-3 Phase 3 Randomized Controlled Trial

Michele Delforge

Oral
Presentation
#1003

652. Multiple Myeloma: Clinical and Epidemiological: Predicting Outcome and Side Effects of Novel Immunotherapies in Multiple Myeloma

Monday,
December 11,
4:30 PM

A Pro-Inflammatory State and Peak Cytokines Are Associated with Toxicity and Early Responses in Real-World Multiple Myeloma Patients Treated with Idecabtagene Vicleucel

Doris Hansen

Oral
Presentation
#1004

652. Multiple Myeloma: Clinical and Epidemiological: Predicting Outcome and Side Effects of Novel Immunotherapies in Multiple Myeloma

Monday,
December 11,
4:45 PM

Idecabtagene Vicleucel (ide-cel) Versus Standard Regimens in Patients (pts) with Triple-Class Exposed (TCE) Relapsed and Refractory Multiple Myeloma (RRMM): Updated Analysis from KarMMa-3

Paula Rodriguez-Otero

Oral
Presentation
#1028

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Cellular Therapy for Multiple Myeloma, B-cell Acute Lymphoblastic Leukemia and B Cell Lymphomas: Clinical Trial and Real World Evidence

Monday,
December 11,
4:45 PM

Mezigdomide (MEZI) Plus Dexamethasone (DEX) and Daratumumab (DARA) or Elotuzumab (ELO) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from the CC-92480-MM-002 Trial

Paul Richardson

Oral
Presentation
#1013

653. Multiple Myeloma: Prospective Therapeutic Trials: Relapsed and Refractory Myeloma

Monday,
December 11,
5:30 PM

RRMM and Post-BCMA Treated Subjects from the CC-220-MM-001 Study Show Increased Genomic Aberrations Associated with High-Risk and Significant Dysfunction in CD4+ T-Cell Compartment Compared to NDMM Subjects

Michael Amatangelo

Poster
Presentation
#4665

651. Multiple Myeloma and Plasma Cell Dyscrasias: Basic and Translational: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Idecabtagene Vicleucel (Ide-cel) versus Standard (std) Regimens in Patients With Triple-Class–Exposed (TCE) Relapsed and Refractory Multiple Myeloma (RRMM): Analysis of Cytopenias and Infections in Patients (pts) From KarMMa-3

Rachid Baz

Poster
Presentation
#4879

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Facility-Related Healthcare Resource Utilization (HCRU) for Patients Treated with Idecabtagene Vicleucel (Ide-Cel, bb2121) in a Real-World (RW) Setting: A Single-Center Experience

Lauren Peres

Poster
Presentation
#5081

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Myelodysplastic Syndromes

Efficacy and Safety of Luspatercept Versus Epoetin Alfa in Erythropoiesis-Stimulating Agent (ESA)-Naive Patients (Pts) with Transfusion-Dependent (TD) Lower-Risk Myelodysplastic Syndromes (LR-MDS): Full Analysis of the COMMANDS Trial

Guillermo Garcia-Manero

Oral
Presentation
#193

637. Myelodysplastic Syndromes – Clinical and Epidemiological: Treatment Options and Decision Making in Low Risk MDS

Saturday,
December 9,
2:00 PM

GDF11/SMAD Regulated Splicing of GATA1 Is Associated with Response to Luspatercept in Lower-Risk Myelodysplastic Syndromes (LR MDS)

Srinivas Aluri

Oral
Presentation
#318

636. Myelodysplastic Syndromes – Basic and Translational: Molecular Drivers and Therapeutic Implications

Saturday,
December 9,
5:15 PM

Luspatercept Modulates Inflammation in the Bone Marrow, Restores Effective Erythropoiesis/Hematopoiesis, and Provides Sustained Clinical Benefit versus Epoetin Alfa (EA): Biomarker Analysis from the Phase 3 COMMANDS Study

Sheida Hayati

Poster
Presentation
#1845

636. Myelodysplastic Syndromes – Basic and Translational: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Clonal Hematopoiesis-Related Mutations Are Associated with Favorable Clinical Benefit Following Luspatercept Treatment in Patients with Lower-Risk Myelodysplastic Syndromes: A Subgroup Analysis from the Phase 3 COMMANDS Trial

Maroof Hasan

Poster
Presentation
#3214

636. Myelodysplastic Syndromes—Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Real-World Retrospective Study of Non-Transfusion Dependent Patients with Myelodysplastic Syndromes in a Large Healthcare Claims Database

Leslie Andritsos

Poster
Presentation
#3808

906. Outcomes Research—Myeloid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Long-Term Evaluation of Luspatercept in Erythropoiesis Stimulating Agent (ESA)-Intolerant/Refractory Patients (pts) with Lower-Risk Myelodysplastic Syndromes (LR-MDS) in the Phase 3 MEDALIST Study

Valeria Santini

Oral
Presentation
#915

906. Outcomes Research – Myeloid Malignancies: Symptom Burden and Supportive Therapies

Monday,
December 11,
3:15 PM

Real-World Impact of Luspatercept on Patients with Myelodysplastic Syndromes Requiring Red Blood Cell Transfusions and with Prior Exposure to Erythropoietin Stimulating Agents in a Large Healthcare Claims Database

Kashyap Patel

Oral
Presentation
#916

906. Outcomes Research – Myeloid Malignancies: Symptom Burden and Supportive Therapies

Monday,
December 11,
3:30 PM

Patient-Reported Outcomes (PRO) of Luspatercept Versus Epoetin Alfa in Erythropoiesis-Stimulating Agent (ESA)-Naïve, Transfusion-Dependent (TD), Low-Risk Myelodysplastic Syndromes (MDS): Results from the Phase 3 COMMANDS Study

Esther Oliva

Poster
Presentation
#4596

637. Myelodysplastic Syndromes – Clinical and Epidemiological: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Impact of Genomic Landscape and Mutational Burden on Primary Endpoint Responses in the COMMANDS Study

Rami Komrokji

Poster
Presentation
#4591

636. Myelodysplastic Syndromes—Basic and Translational: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Myelofibrosis

Patient Characteristics, Treatment Patterns, and Health Outcomes in a Real-World Population of Patients with Myelofibrosis Treated with Fedratinib

Francesco Passamonti

Poster
Presentation
#2425

906. Outcomes Research – Myeloid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

BMS-986158, a Potent BET Inhibitor, in Combination with Ruxolitinib or Fedratinib in Patients (pts) with Intermediate- or High-risk Myelofibrosis (MF): Updated Results from a Phase 1/2 Study

David Lavie

Oral
Presentation
#623

634. Myeloproliferative Syndromes: Clinical and Epidemiological: Charting the Future of MPN Therapies

Sunday,
December 10,
5:30 PM

Modulation of Biomarkers by BET Inhibitor, BMS-986158, Including JAK2 Variant Allele Frequency (VAF), Bone Marrow (BM) Fibrosis, and Reversal of Abnormal Cytokine Production in Intermediate- or High-Risk Myelofibrosis (MF)

Si Tuen Lee-Hoeflich

Poster
Presentation
#3158

631. Myeloproliferative Syndromes and Chronic Myeloid Leukemia: Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Efficacy and Safety of Fedratinib in Patients with Myelofibrosis Previously Treated with Ruxolitinib: Results from the Phase 3 Randomized FREEDOM2 Study

Claire Harrison

Poster
Presentation
#3204

634. Myeloproliferative Syndromes: Clinical and Epidemiological: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Fedratinib Treatment Reduces the Inflammatory Cytokine Profile and Decreases Exhausted T Cells Correlating with Clinical Response in Patients with Myelofibrosis: Biomarker Analysis from the Phase 3 FREEDOM2 Trial

Danny Jeyaraju

Poster
Presentation
#4526

631. Myeloproliferative Syndromes and Chronic Myeloid Leukemia: Basic and Translational: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Clinical Parameters, Anemia, and Spleen Response in Patients with MF-Related Anemia Treated with Luspatercept: Efficacy Sub-Analysis from the ACE-536-MF-001 Study

Aaron Gerds

Poster
Presentation
#4565

634. Myeloproliferative Syndromes: Clinical and Epidemiological: Poster III

Monday,
December 11,
6:00 – 8:00 PM

BREYANZI U.S. INDICATIONS

BREYANZI (lisocabtagene maraleucel; liso-cel) is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of adult patients with large B-cell lymphoma (LBCL), including diffuse large B-cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma), high-grade B cell lymphoma, primary mediastinal large B-cell lymphoma, and follicular lymphoma grade 3B, who have:

refractory disease to first-line chemoimmunotherapy or relapse within 12 months of first-line chemoimmunotherapy; or refractory disease to first-line chemoimmunotherapy or
relapse after first-line chemoimmunotherapy and are not eligible for hematopoietic stem cell transplantation (HSCT) due to comorbidities or age; or
relapsed or refractory disease after two or more lines of systemic therapy.
Limitations of Use: BREYANZI is not indicated for the treatment of patients with primary central nervous system lymphoma.

Important Safety Information

BOXED WARNING: CYTOKINE RELEASE SYNDROME and NEUROLOGIC TOXICITIES

Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients receiving BREYANZI. Do not administer BREYANZI to patients with active infection or inflammatory disorders. Treat severe or life-threatening CRS with tocilizumab with or without corticosteroids.
Neurologic toxicities, including fatal or life-threatening reactions, occurred in patients receiving BREYANZI, including concurrently with CRS, after CRS resolution or in the absence of CRS. Monitor for neurologic events after treatment with BREYANZI. Provide supportive care and/or corticosteroids as needed.
BREYANZI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the BREYANZI REMS.
Cytokine Release Syndrome

Cytokine release syndrome (CRS), including fatal or life-threatening reactions, occurred following treatment with BREYANZI. Among patients receiving BREYANZI for LBCL (N=418), CRS occurred in 46% (190/418), including ≥ Grade 3 CRS (Lee grading system) in 3.1% of patients.

In patients receiving BREYANZI after two or more lines of therapy for LBCL, CRS occurred in 46% (122/268), including ≥ Grade 3 CRS in 4.1% of patients. One patient had fatal CRS and 2 had ongoing CRS at time of death. The median time to onset was 5 days (range: 1 to 15 days). CRS resolved in 98% with a median duration of 5 days (range: 1 to 17 days).

In patients receiving BREYANZI after one line of therapy for LBCL, CRS occurred in 45% (68/150), including Grade 3 CRS in 1.3% of patients. The median time to onset was 4 days (range: 1 to 63 days). CRS resolved in all patients with a median duration of 4 days (range: 1 to 16 days).

The most common manifestations of CRS (≥10%) included fever (94%), hypotension (42%), tachycardia (28%), chills (23%), hypoxia (16%), and headache (12%).

Serious events that may be associated with CRS include cardiac arrhythmias (including atrial fibrillation and ventricular tachycardia), cardiac arrest, cardiac failure, diffuse alveolar damage, renal insufficiency, capillary leak syndrome, hypotension, hypoxia, and hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS).

Ensure that 2 doses of tocilizumab are available prior to infusion of BREYANZI.

Of the 418 patients who received BREYANZI for LBCL, 23% received tocilizumab and/or a corticosteroid for CRS, including 10% who received tocilizumab only and 2.2% who received corticosteroids only.

Neurologic Toxicities

Neurologic toxicities that were fatal or life-threatening, including immune effector cell-associated neurotoxicity syndrome (ICANS), occurred following treatment with BREYANZI. Serious events including cerebral edema and seizures occurred with BREYANZI. Fatal and serious cases of leukoencephalopathy, some attributable to fludarabine, also occurred.

In patients receiving BREYANZI after two or more lines of therapy for LBCL, CAR T cell-associated neurologic toxicities occurred in 35% (95/268), including ≥ Grade 3 in 12% of patients. Three patients had fatal neurologic toxicity and 7 had ongoing neurologic toxicity at time of death. The median time to onset of neurotoxicity was 8 days (range: 1 to 46 days). Neurologic toxicities resolved in 85% with a median duration of 12 days (range: 1 to 87 days).

In patients receiving BREYANZI after one line of therapy for LBCL, CAR T cell-associated neurologic toxicities occurred in 27% (41/150) of patients, including Grade 3 cases in 7% of patients. The median time to onset of neurologic toxicities was 8 days (range: 1 to 63 days). The median duration of neurologic toxicity was 6 days (range: 1 to 119 days).

In all patients combined receiving BREYANZI for LBCL, neurologic toxicities occurred in 33% (136/418), including ≥ Grade 3 cases in 10% of patients. The median time to onset was 8 days (range: 1 to 63), with 87% of cases developing by 16 days. Neurologic toxicities resolved in 85% of patients with a median duration of 11 days (range: 1 to 119 days). Of patients developing neurotoxicity, 77% (105/136) also developed CRS.

The most common neurologic toxicities (≥ 5%) included encephalopathy (20%), tremor (13%), aphasia (8%), headache (6%), dizziness (6%), and delirium (5%).

CRS and Neurologic Toxicities Monitoring

Monitor patients daily for at least 7 days following BREYANZI infusion at a REMS-certified healthcare facility for signs and symptoms of CRS and neurologic toxicities and assess for other causes of neurological symptoms. Monitor patients for signs and symptoms of CRS and neurologic toxicities for at least 4 weeks after infusion and treat promptly. At the first sign of CRS, institute treatment with supportive care, tocilizumab, or tocilizumab and corticosteroids as indicated. Manage neurologic toxicity with supportive care and/or corticosteroid as needed. Counsel patients to seek immediate medical attention should signs or symptoms of CRS or neurologic toxicity occur at any time.

BREYANZI REMS

Because of the risk of CRS and neurologic toxicities, BREYANZI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the BREYANZI REMS. The required components of the BREYANZI REMS are:

Healthcare facilities that dispense and administer BREYANZI must be enrolled and comply with the REMS requirements.
Certified healthcare facilities must have on-site, immediate access to tocilizumab.
Ensure that a minimum of 2 doses of tocilizumab are available for each patient for infusion within 2 hours after BREYANZI infusion, if needed for treatment of CRS.
Certified healthcare facilities must ensure that healthcare providers who prescribe, dispense, or administer BREYANZI are trained on the management of CRS and neurologic toxicities.
Further information is available at www.BreyanziREMS.com, or contact Bristol-Myers Squibb at 1-888-423-5436.

Hypersensitivity Reactions

Allergic reactions may occur with the infusion of BREYANZI. Serious hypersensitivity reactions, including anaphylaxis, may be due to dimethyl sulfoxide (DMSO).

Serious Infections

Severe infections, including life-threatening or fatal infections, have occurred in patients after BREYANZI infusions.

In patients receiving BREYANZI for LBCL, infections of any grade occurred in 36% with Grade 3 or higher infections occurring in 12% of all patients. Grade 3 or higher infections with an unspecified pathogen occurred in 7%, bacterial infections occurred in 4.3%, viral infections in 1.9% and fungal infections in 0.5%.

Febrile neutropenia developed after BREYANZI infusion in 8% of patients with LBCL. Febrile neutropenia may be concurrent with CRS. In the event of febrile neutropenia, evaluate for infection and manage with broad spectrum antibiotics, fluids, and other supportive care as medically indicated.

Monitor patients for signs and symptoms of infection before and after BREYANZI administration and treat appropriately. Administer prophylactic antimicrobials according to standard institutional guidelines.

Avoid administration of BREYANZI in patients with clinically significant active systemic infections.

Viral reactivation: Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, can occur in patients treated with drugs directed against B cells.

In patients who received BREYANZI for LBCL, 15 of the 16 patients with a prior history of HBV were treated with concurrent antiviral suppressive therapy. Perform screening for HBV, HCV, and HIV in accordance with clinical guidelines before collection of cells for manufacturing. In patients with prior history of HBV, consider concurrent antiviral suppressive therapy to prevent HBV reactivation per standard guidelines.

Prolonged Cytopenias

Patients may exhibit cytopenias not resolved for several weeks following lymphodepleting chemotherapy and BREYANZI infusion.

Grade 3 or higher cytopenias persisted at Day 29 following BREYANZI infusion in 36% of patients with LBCL and included thrombocytopenia in 28%, neutropenia in 21%, and anemia in 6%.

Monitor complete blood counts prior to and after BREYANZI administration.

Hypogammaglobulinemia

B-cell aplasia and hypogammaglobulinemia can occur in patients receiving treatment with BREYANZI.

In patients receiving BREYANZI for LBCL, hypogammaglobulinemia was reported as an adverse reaction in 11% of patients. Hypogammaglobulinemia, either as an adverse reaction or laboratory IgG level below 500 mg/dL after infusion, was reported in 28% of patients.

Monitor immunoglobulin levels after treatment with BREYANZI and manage using infection precautions, antibiotic prophylaxis, and immunoglobulin replacement as clinically indicated.

Live vaccines: The safety of immunization with live viral vaccines during or following BREYANZI treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during BREYANZI treatment, and until immune recovery following treatment with BREYANZI.

Secondary Malignancies

Patients treated with BREYANZI may develop secondary malignancies. Monitor lifelong for secondary malignancies. In the event that a secondary malignancy occurs, contact Bristol-Myers Squibb at 1-888-805-4555 for reporting and to obtain instructions on collection of patient samples for testing.

Effects on Ability to Drive and Use Machines

Due to the potential for neurologic events, including altered mental status or seizures, patients receiving BREYANZI are at risk for developing altered or decreased consciousness or impaired coordination in the 8 weeks following BREYANZI administration. Advise patients to refrain from driving and engaging in hazardous occupations or activities, such as operating heavy or potentially dangerous machinery, for at least 8 weeks.

Adverse Reactions

The most common nonlaboratory adverse reactions (incidence ≥ 30%) are fever, CRS, fatigue, musculoskeletal pain, and nausea.

The most common Grade 3-4 laboratory abnormalities (≥ 30%) include lymphocyte count decrease, neutrophil count decrease, platelet count decrease, and hemoglobin decrease.

Please see full Prescribing Information, including Boxed WARNINGS and Medication Guide.

ABECMA U.S. INDICATION

ABECMA (idecabtagene vicleucel) is a B-cell maturation antigen (BCMA)-directed genetically modified autologous T cell immunotherapy indicated for the treatment of adult patients with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody.

IMPORTANT SAFETY INFORMATION

BOXED WARNING: CYTOKINE RELEASE SYNDROME, NEUROLOGIC TOXICITIES, HLH/MAS, AND PROLONGED CYTOPENIA

Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients following treatment with ABECMA. Do not administer ABECMA to patients with active infection or inflammatory disorders. Treat severe or life-threatening CRS with tocilizumab or tocilizumab and corticosteroids.
Neurologic Toxicities, which may be severe or life-threatening, occurred following treatment with ABECMA, including concurrently with CRS, after CRS resolution, or in the absence of CRS. Monitor for neurologic events after treatment with ABECMA. Provide supportive care and/or corticosteroids as needed.
Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome (HLH/MAS) including fatal and life-threatening reactions, occurred in patients following treatment with ABECMA. HLH/MAS can occur with CRS or neurologic toxicities.
Prolonged Cytopenia with bleeding and infection, including fatal outcomes following stem cell transplantation for hematopoietic recovery, occurred following treatment with ABECMA.
ABECMA is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the ABECMA REMS.
Warnings and Precautions:

Cytokine Release Syndrome (CRS): CRS, including fatal or life-threatening reactions, occurred following treatment with ABECMA in 85% (108/127) of patients. Grade 3 or higher CRS occurred in 9% (12/127) of patients, with Grade 5 CRS reported in one (0.8%) patient. The median time to onset of CRS, any grade, was 1 day (range: 1 – 23 days) and the median duration of CRS was 7 days (range: 1 – 63 days). The most common manifestations included pyrexia, hypotension, tachycardia, chills, hypoxia, fatigue, and headache. Grade 3 or higher events that may be associated with CRS include hypotension, hypoxia, hyperbilirubinemia, hypofibrinogenemia, acute respiratory distress syndrome (ARDS), atrial fibrillation, hepatocellular injury, metabolic acidosis, pulmonary edema, multiple organ dysfunction syndrome, and HLH/MAS.

Identify CRS based on clinical presentation. Evaluate for and treat other causes of fever, hypoxia, and hypotension. CRS has been reported to be associated with findings of HLH/MAS, and the physiology of the syndromes may overlap. In patients with progressive symptoms of CRS or refractory CRS despite treatment, evaluate for evidence of HLH/MAS.

Fifty four percent (68/127) of patients received tocilizumab (single dose: 35%; more than 1 dose: 18%). Overall, 15% (19/127) of patients received at least 1 dose of corticosteroids for treatment of CRS. All patients that received corticosteroids for CRS received tocilizumab. Ensure that a minimum of 2 doses of tocilizumab are available prior to infusion of ABECMA.

Monitor patients at least daily for 7 days following ABECMA infusion at the REMS-certified healthcare facility for signs or symptoms of CRS and monitor patients for signs or symptoms of CRS for at least 4 weeks after ABECMA infusion. At the first sign of CRS, institute treatment with supportive care, tocilizumab and/or corticosteroids as indicated.

Counsel patients to seek immediate medical attention should signs or symptoms of CRS occur at any time.

Neurologic Toxicities: Neurologic toxicities, which may be severe or life-threatening, occurred following treatment with ABECMA in 28% (36/127) of patients receiving ABECMA, including Grade 3 in 4% (5/127) of patients. One patient had ongoing Grade 2 neurotoxicity at the time of death. Two patients had ongoing Grade 1 tremor at the time of data cutoff. The median time to onset of neurotoxicity was 2 days (range: 1 – 42 days). CAR T cell-associated neurotoxicity resolved in 92% (33/36) of patients with a median time to resolution of 5 days (range: 1 – 61 days). The median duration of neurotoxicity was 6 days (range: 1 – 578) in all patients including 3 patients with ongoing neurotoxicity. Thirty-four patients with neurotoxicity had CRS with onset in 3 patients before, 29 patients during, and 2 patients after CRS. The most frequently reported manifestations of CAR T cell-associated neurotoxicity include encephalopathy, tremor, aphasia, and delirium. Grade 4 neurotoxicity and cerebral edema in 1 patient, Grade 3 myelitis, and Grade 3 parkinsonism have been reported with ABECMA in another study in multiple myeloma.

Monitor patients at least daily for 7 days following ABECMA infusion at the REMS-certified healthcare facility for signs or symptoms of neurologic toxicities and monitor patients for signs or symptoms of neurologic toxicities for at least 4 weeks after ABECMA infusion and treat promptly. Rule out other causes of neurologic symptoms. Neurologic toxicity should be managed with supportive care and/or corticosteroids as needed.

Counsel patients to seek immediate medical attention should signs or symptoms occur at any time.

Hemophagocytic Lymphohistiocytosis (HLH)/Macrophage Activation Syndrome (MAS): HLH/MAS occurred in 4% (5/127) of patients receiving ABECMA. One patient developed fatal multi-organ HLH/MAS with CRS and another patient developed fatal bronchopulmonary aspergillosis with contributory HLH/MAS. Three cases of Grade 2 HLH/MAS resolved. All events of HLH/MAS had onset within 10 days of receiving ABECMA with a median onset of 7 days (range: 4 – 9 days) and occurred in the setting of ongoing or worsening CRS. Two patients with HLH/MAS had overlapping neurotoxicity. The manifestations of HLH/MAS include hypotension, hypoxia, multiple organ dysfunction, renal dysfunction, and cytopenia. HLH/MAS is a potentially life-threatening condition with a high mortality rate if not recognized early and treated. Treatment of HLH/MAS should be administered per institutional guidelines.

ABECMA REMS: Due to the risk of CRS and neurologic toxicities, ABECMA is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the ABECMA REMS. Further information is available at www.AbecmaREMS.com or 1-888-423-5436.

Hypersensitivity Reactions: Allergic reactions may occur with the infusion of ABECMA. Serious hypersensitivity reactions, including anaphylaxis, may be due to dimethyl sulfoxide (DMSO) in ABECMA.

Infections: ABECMA should not be administered to patients with active infections or inflammatory disorders. Severe, life-threatening, or fatal infections occurred in patients after ABECMA infusion. Infections (all grades) occurred in 70% of patients. Grade 3 or 4 infections occurred in 23% of patients. Overall, 4 patients had Grade 5 infections (3%); 2 patients (1.6%) had Grade 5 events of pneumonia, 1 patient (0.8%) had Grade 5 bronchopulmonary aspergillosis, and 1 patient (0.8%) had cytomegalovirus (CMV) pneumonia associated with Pneumocystis jirovecii. Monitor patients for signs and symptoms of infection before and after ABECMA infusion and treat appropriately. Administer prophylactic, pre-emptive, and/or therapeutic antimicrobials according to standard institutional guidelines.

Febrile neutropenia was observed in 16% (20/127) of patients after ABECMA infusion and may be concurrent with CRS. In the event of febrile neutropenia, evaluate for infection and manage with broad-spectrum antibiotics, fluids, and other supportive care.

Viral Reactivation: CMV infection resulting in pneumonia and death has occurred following ABECMA administration. Monitor and treat for CMV reactivation in accordance with clinical guidelines. Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, can occur in patients treated with drugs directed against plasma cells. Perform screening for CMV, HBV, hepatitis C virus (HCV), and human immunodeficiency virus (HIV) in accordance with clinical guidelines before collection of cells for manufacturing.

Prolonged Cytopenias: In the clinical study, 41% of patients (52/127) experienced prolonged Grade 3 or 4 neutropenia and 49% (62/127) experienced prolonged Grade 3 or 4 thrombocytopenia that had not resolved by Month 1 following ABECMA infusion. In 83% (43/52) of patients who recovered from Grade 3 or 4 neutropenia after Month 1, the median time to recovery from ABECMA infusion was 1.9 months. In 65% (40/62) of patients who recovered from Grade 3 or 4 thrombocytopenia, the median time to recovery was 2.1 months.

Three patients underwent stem cell therapy for hematopoietic reconstitution due to prolonged cytopenia. Two of the three patients died from complications of prolonged cytopenia. Monitor blood counts prior to and after ABECMA infusion. Manage cytopenia with myeloid growth factor and blood product transfusion support.

Hypogammaglobulinemia: Hypogammaglobulinemia was reported as an adverse event in 21% (27/127) of patients; laboratory IgG levels fell below 500 mg/dl after infusion in 25% (32/127) of patients treated with ABECMA.

Monitor immunoglobulin levels after treatment with ABECMA and administer IVIG for IgG <400 mg/dl. Manage appropriately per local institutional guidelines, including infection precautions and antibiotic or antiviral prophylaxis.

The safety of immunization with live viral vaccines during or after ABECMA treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during ABECMA treatment, and until immune recovery following treatment with ABECMA.

Secondary Malignancies: Patients treated with ABECMA may develop secondary malignancies. Monitor life-long for secondary malignancies. If a secondary malignancy occurs, contact Bristol-Myers Squibb at 1-888-805-4555 to obtain instructions on patient samples to collect for testing of secondary malignancy of T cell origin.

Effects on Ability to Drive and Operate Machinery: Due to the potential for neurologic events, patients receiving ABECMA are at risk for altered or decreased consciousness or coordination in the 8 weeks following ABECMA infusion. Advise patients to refrain from driving and engaging in hazardous occupations or activities, such as operating heavy or potentially dangerous machinery, during this initial period.

Adverse Reactions: The most common nonlaboratory adverse reactions include CRS, infections – pathogen unspecified, fatigue, musculoskeletal pain, hypogammaglobulinemia, diarrhea, upper respiratory tract infection, nausea, viral infections, encephalopathy, edema, pyrexia, cough, headache, and decreased appetite.

Please see full Prescribing Information, including Boxed WARNINGS and Medication Guide.

REBLOZYL U.S. INDICATIONS

REBLOZYL (luspatercept-aamt), a first-in-class therapeutic option, promotes late-stage red blood cell maturation in animal models.REBLOZYL is being developed and commercialized through a global collaboration and North American co-promotion with Merck following Merck’s acquisition of Acceleron Pharma, Inc. in November 2021. REBLOZYL is indicated in the U.S. for the treatment of:

anemia in adult patients with beta thalassemia who require regular red blood cell (RBC) transfusions, and
anemia without previous erythropoiesis stimulating agent use (ESA-naïve) in adult patients with very low- to intermediate-risk myelodysplastic syndromes (MDS) who may require regular red blood cell (RBC) transfusions.
anemia failing an erythropoiesis stimulating agent and requiring 2 or more red blood cell (RBC) units over 8 weeks in adult patients with very low- to intermediate-risk myelodysplastic syndrome with ring sideroblasts (MDS-RS) or with myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T).
REBLOZYL is not indicated for use as a substitute for RBC transfusions in patients who require immediate correction of anemia. In the U.S., REBLOZYL is not indicated for use in patients with non-transfusion-dependent beta thalassemia.

Important Safety Information

WARNINGS AND PRECAUTIONS

Thrombosis/Thromboembolism

In adult patients with beta thalassemia, thromboembolic events (TEE) were reported in 8/223 (3.6%) of REBLOZYL-treated patients. TEEs included deep vein thrombosis, pulmonary embolus, portal vein thrombosis, and ischemic stroke. Patients with known risk factors for thromboembolism (splenectomy or concomitant use of hormone replacement therapy) may be at further increased risk of thromboembolic conditions. Consider thromboprophylaxis in patients at increased risk of TEE. Monitor patients for signs and symptoms of thromboembolic events and institute treatment promptly.

Hypertension

Hypertension was reported in 11.4% (63/554) of REBLOZYL-treated patients. Across clinical studies, the incidence of Grade 3 to 4 hypertension ranged from 2% to 9.6%. In patients with beta thalassemia with normal baseline blood pressure, 13 (6.2%) patients developed systolic blood pressure (SBP) ≥130 mm Hg and 33 (16.6%) patients developed diastolic blood pressure (DBP) ≥80 mm Hg. In ESA-refractory or -intolerant adult patients with MDS with normal baseline blood pressure, 26 (30%) patients developed SBP ≥130 mm Hg and 23 (16%) patients developed DBP ≥80 mm Hg. In ESA-naïve adult patients with MDS with normal baseline blood pressure, 23 (36%) patients developed SBP ≥140 mm Hg and 11 (6%) patients developed DBP ≥80 mm Hg. Monitor blood pressure prior to each administration. Manage new or exacerbations of preexisting hypertension using anti-hypertensive agents.

Extramedullary Hematopoietic (EMH) Masses

In adult patients with transfusion-dependent beta thalassemia, EMH masses were observed in 3.2% of REBLOZYL-treated patients, with spinal cord compression symptoms due to EMH masses occurring in 1.9% of patients (BELIEVE and REBLOZYL long-term follow-up study).

In a study of adult patients with non-transfusion-dependent beta thalassemia, a higher incidence of EMH masses was observed in 6.3% of REBLOZYL-treated patients vs. 2% of placebo-treated patients in the double-blind phase of the study, with spinal cord compression due to EMH masses occurring in 1 patient with a prior history of EMH. REBLOZYL is not indicated for use in patients with non-transfusion-dependent beta thalassemia.

Possible risk factors for the development of EMH masses in patients with beta thalassemia include history of EMH masses, splenectomy, splenomegaly, hepatomegaly, or low baseline hemoglobin (<8.5 g/dL). Signs and symptoms may vary depending on the anatomical location. Monitor patients with beta thalassemia at initiation and during treatment for symptoms and signs or complications resulting from the EMH masses and treat according to clinical guidelines. Discontinue treatment with REBLOZYL in case of serious complications due to EMH masses. Avoid use of REBLOZYL in patients requiring treatment to control the growth of EMH masses.

Embryo-Fetal Toxicity

REBLOZYL may cause fetal harm when administered to a pregnant woman. REBLOZYL caused increased post-implantation loss, decreased litter size, and an increased incidence of skeletal variations in pregnant rat and rabbit studies. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment and for at least 3 months after the final dose.

ADVERSE REACTIONS

Beta-Thalassemia

Serious adverse reactions occurred in 3.6% of patients on REBLOZYL. Serious adverse reactions occurring in 1% of patients included cerebrovascular accident and deep vein thrombosis. A fatal adverse reaction occurred in 1 patient treated with REBLOZYL who died due to an unconfirmed case of acute myeloid leukemia (AML).

Most common adverse reactions (at least 10% for REBLOZYL and 1% more than placebo) were headache (26% vs 24%), bone pain (20% vs 8%), arthralgia (19% vs 12%), fatigue (14% vs 13%), cough (14% vs 11%), abdominal pain (14% vs 12%), diarrhea (12% vs 10%) and dizziness (11% vs 5%).

ESA-naïve adult patients with Myelodysplastic Syndromes

Grade ≥3 (≥2%) adverse reactions included hypertension and dyspnea.

The most common (≥10%) all-grade adverse reactions included diarrhea, fatigue, hypertension, peripheral edema, nausea, and dyspnea.

ESA-refractory or -intolerant adult patients with Myelodysplastic Syndromes

Grade ≥3 (≥2%) adverse reactions included fatigue, hypertension, syncope and musculoskeletal pain. A fatal adverse reaction occurred in 5 (2.1%) patients.

The most common (≥10%) adverse reactions included fatigue, musculoskeletal pain, dizziness, diarrhea, nausea, hypersensitivity reactions, hypertension, headache, upper respiratory tract infection, bronchitis, and urinary tract infection.

LACTATION

It is not known whether REBLOZYL is excreted into human milk or absorbed systemically after ingestion by a nursing infant. REBLOZYL was detected in milk of lactating rats. When a drug is present in animal milk, it is likely that the drug will be present in human milk. Because many drugs are excreted in human milk, and because of the unknown effects of REBLOZYL in infants, a decision should be made whether to discontinue nursing or to discontinue treatment. Because of the potential for serious adverse reactions in the breastfed child, breastfeeding is not recommended during treatment and for 3 months after the last dose.

DRUG ABUSE POTENTIAL

Abuse: Abuse of REBLOZYL may be seen in athletes for the effects on erythropoiesis. Misuse of drugs that increase erythropoiesis, such as REBLOZYL, by healthy persons may lead to polycythemia, which may be associated with life-threatening cardiovascular complications.

Please see accompanying U.S. Full Prescribing Information for REBLOZYL.

INREBIC

INDICATION

INREBIC (fedratinib) is indicated for the treatment of adult patients with intermediate-2 or high-risk primary or secondary (post-polycythemia vera or post-essential thrombocythemia) myelofibrosis (MF).

IMPORTANT SAFETY INFORMATION

BOXED WARNING: ENCEPHALOPATHY INCLUDING WERNICKE’S

Serious and fatal encephalopathy, including Wernicke’s, has occurred in patients treated with INREBIC. Wernicke’s encephalopathy is a neurologic emergency. Assess thiamine levels in all patients prior to starting INREBIC, periodically during treatment, and as clinically indicated. Do not start INREBIC in patients with thiamine deficiency; replete thiamine prior to treatment initiation. If encephalopathy is suspected, immediately discontinue INREBIC and initiate parenteral thiamine. Monitor until symptoms resolve or improve and thiamine levels normalize.

WARNINGS AND PRECAUTIONS

Encephalopathy, including Wernicke’s: Serious and fatal encephalopathy, including Wernicke’s encephalopathy, has been reported in 1.3% (8/608) of patients treated with INREBIC in clinical trials and 0.16% (1/608) of cases were fatal.

Wernicke’s encephalopathy is a neurologic emergency resulting from thiamine (Vitamin B1) deficiency. Signs and symptoms of Wernicke’s encephalopathy may include ataxia, mental status changes, and ophthalmoplegia (e.g., nystagmus, diplopia). Any change in mental status, confusion, or memory impairment should raise concern for potential encephalopathy, including Wernicke’s, and prompt a full evaluation including a neurologic examination, assessment of thiamine levels, and imaging. Assess thiamine levels in all patients prior to starting INREBIC, periodically during treatment, and as clinically indicated. Do not start INREBIC in patients with thiamine deficiency; replete thiamine prior to treatment initiation. If encephalopathy is suspected, immediately discontinue INREBIC and initiate parenteral thiamine. Monitor until symptoms resolve or improve and thiamine levels normalize.

Anemia: New or worsening Grade 3 anemia occurred in 34% of INREBIC-treated patients. The median time to onset of the first Grade 3 anemia was approximately 2 months, with 75% of cases occurring within 3 months. Mean hemoglobin levels reached nadir after 12 to 16 weeks with partial recovery and stabilization after 16 weeks. Red blood cell transfusions were received by 51% of INREBIC-treated patients and permanent discontinuation of INREBIC occurred due to anemia in 1% of patients. Consider dose reduction for patients who become red blood cell transfusion dependent.

Thrombocytopenia: New or worsening Grade ≥3 thrombocytopenia during the randomized treatment period occurred in 12% of INREBIC-treated patients. The median time to onset of the first Grade 3 thrombocytopenia was approximately 1 month; with 75% of cases occurring within 4 months. Platelet transfusions were received by 3.1% of INREBIC-treated patients. Permanent discontinuation of treatment due to thrombocytopenia and bleeding that required clinical intervention both occurred in 2.1% of INREBIC-treated patients. Obtain a complete blood count (CBC) at baseline, periodically during treatment, and as clinically indicated. For Grade 3 thrombocytopenia with active bleeding or Grade 4 thrombocytopenia, interrupt INREBIC until resolved to less than or equal to Grade 2 or baseline. Restart dose at 100 mg daily below the last given dose and monitor platelets as clinically indicated.

Gastrointestinal Toxicity: Gastrointestinal toxicities are the most frequent adverse reactions in INREBIC-treated patients. During the randomized treatment period, diarrhea occurred in 66% of patients, nausea in 62% of patients, and vomiting in 39% of patients. Grade 3 diarrhea 5% and vomiting 3.1% occurred. The median time to onset of any grade nausea, vomiting, and diarrhea was 1 day, with 75% of cases occurring within 2 weeks of treatment. Consider providing appropriate prophylactic anti-emetic therapy (e.g., 5-HT3 receptor antagonists) during INREBIC treatment. Treat diarrhea with anti-diarrheal medications promptly at the first onset of symptoms. Grade 3 or higher nausea, vomiting, or diarrhea not responsive to supportive measures within 48 hours, interrupt INREBIC until resolved to Grade 1 or less or baseline. Restart dose at 100 mg daily below the last given dose. Monitor thiamine levels and replete as needed.

Hepatic Toxicity: Elevations of ALT and AST (all grades) during the randomized treatment period occurred in 43% and 40%, respectively, with Grade 3 or 4 in 1% and 0%, respectively, of INREBIC-treated patients. The median time to onset of any grade transaminase elevation was approximately 1 month, with 75% of cases occurring within 3 months. Monitor hepatic function at baseline, periodically during treatment, and as clinically indicated. For Grade 3 or higher ALT and/or AST elevations (greater than 5 × ULN), interrupt INREBIC dose until resolved to Grade 1 or less or to baseline. Restart dose at 100 mg daily below the last given dose. If re-occurrence of a Grade 3 or higher elevation of ALT/AST, discontinue treatment with INREBIC.

Amylase and Lipase Elevation: Grade 3 or higher amylase 2% and/or lipase 10% elevations developed in INREBIC-treated patients. The median time to onset of any grade amylase or lipase elevation was 15 days, with 75% of cases occurring within 1 month of starting treatment. One patient developed pancreatitis in the fedratinib clinical development program (n=608) and pancreatitis resolved with treatment discontinuation. Monitor amylase and lipase at baseline, periodically during treatment, and as clinically indicated. For Grade 3 or higher amylase and/or lipase elevations, interrupt INREBIC until resolved to Grade 1 or less or to baseline. Restart dose at 100 mg daily below the last given dose.

Major Adverse Cardiac Events (MACE): Another JAK inhibitor has increased the risk of MACE, including cardiovascular death, myocardial infarction, and stroke in patients with rheumatoid arthritis (compared to those treated with TNF blockers), a condition for which INREBIC is not indicated. Consider the benefits and risks of the individual patients prior to initiating or continuing therapy with INREBIC, particularly in patients who are current or past smokers, or have other cardiovascular risk factors. Patients should be informed about the symptoms of serious cardiovascular events and what to do if they occur.

Thrombosis: Another JAK inhibitor has increased the risk of thrombosis, including deep venous thrombosis, pulmonary embolism, and arterial thrombosis in patients with rheumatoid arthritis (compared to those treated with TNF blockers), a condition for which INREBIC is not indicated. In patients with MF treated with INREBIC in clinical trials, the rates of thromboembolic events were similar in INREBIC and placebo treated patients. Patients with symptoms of thrombosis should be promptly evaluated and treated appropriately.

Secondary Malignancies: Another JAK inhibitor has increased the risk of lymphoma and other malignancies excluding nonmelanoma skin cancer (NMSC) in patients with rheumatoid arthritis, a condition for which INREBIC is not indicated. Patients who are current or past smokers are at additional increased risk. Consider the benefits and risks for the individual patient prior to initiating or continuing therapy with INREBIC, particularly in patients with a known malignancy (other than a successfully treated NMSC), patients who develop a malignancy, and patients who are current or past smokers.

ADVERSE REACTIONS

The most common adverse reactions for INREBIC treated vs. placebo were diarrhea (66% vs. 16%), nausea (62% vs. 15%), anemia (40% vs. 14%), and vomiting (39% vs. 5%). Dosage interruptions due to an adverse reaction during the randomized treatment period occurred in 21% of patients who received INREBIC. Adverse reactions requiring dosage interruption in >3% of patients who received INREBIC included diarrhea and nausea. Dosage reductions due to an adverse reaction during the randomized treatment period occurred in 19% of patients who received INREBIC. Adverse reactions requiring dosage reduction in >2% of patients who received INREBIC included anemia (6%), diarrhea (3%), vomiting (3%), and thrombocytopenia (2%).

DRUG INTERACTIONS

Coadministration of INREBIC with a strong CYP3A4 inhibitor increases fedratinib exposure. Increased exposure may increase the risk of adverse reactions. Consider alternative therapies that do not strongly inhibit CYP3A4 activity. Alternatively, reduce the dose of INREBIC when administering with a strong CYP3A4 inhibitor. Avoid INREBIC with strong and moderate CYP3A4 inducers. Avoid INREBIC with dual CYP3A4 and CYP2C19 inhibitor. Coadministration of INREBIC with drugs that are CYP3A4 substrates, CYP2C19 substrates, or CYP2D6 substrates increases the concentrations of these drugs, which may increase the risk of adverse reactions of these drugs. Monitor for adverse reactions and adjust the dose of drugs that are CYP3A4, CYP2C19, or CYP2D6 substrates as necessary when coadministered with INREBIC.

PREGNANCY/LACTATION

Consider the benefits and risks of INREBIC for the mother and possible risks to the fetus when prescribing INREBIC to a pregnant woman. Due to the potential for serious adverse reactions in a breastfed child, advise patients not to breastfeed during treatment with INREBIC, and for at least 1 month after the last dose.

RENAL IMPAIRMENT

Reduce INREBIC dose when administered to patients with severe renal impairment. No modification of the starting dose is recommended for patients with mild to moderate renal impairment. Due to potential increase of exposure, patients with preexisting moderate renal impairment require more intensive safety monitoring, and if necessary, dose modifications based on adverse reactions.

HEPATIC IMPAIRMENT

Avoid use of INREBIC in patients with severe hepatic impairment.

Please see full Prescribing Information, including Boxed WARNING, and Summary of Product Characteristics for INREBIC.

Bristol Myers Squibb’s First Disclosures and New Data at ASH 2023 Highlight Company’s Leadership and Progress in Cell Therapy, Targeted Protein Degradation and Novel Approaches in Hematology

On November 2, 2023 Bristol Myers Squibb (NYSE: BMY) reported the presentation of research across its hematology and cell therapy portfolio and pipeline at the 65th American Society of Hematology (ASH) (Free ASH Whitepaper) Annual Meeting and Exposition, which will take place in San Diego, California from December 9 to 12, 2023 (Press release, Bristol-Myers Squibb, NOV 2, 2023, View Source [SID1234636741]). Results from 73 data disclosures across company-sponsored studies will be featured, including 22 oral presentations, showcasing BMS’ commitment to delivering transformative medicines that help more patients living with blood disorders.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"At this year’s ASH (Free ASH Whitepaper) meeting, we look forward to highlighting our continued commitment to unlocking the full promise of cell therapy and our differentiated research platforms, demonstrating the clinical and real-world value of our medicines through our scientific innovation," said Samit Hirawat, M.D., executive vice president, chief medical officer, Global Drug Development, Bristol Myers Squibb. "New data from our diverse portfolio, spanning multiple platforms and combinations, reinforce our pursuit of the next wave of hematology advances across a spectrum of blood diseases with the highest unmet needs."

Key data being presented by Bristol Myers Squibb and its partners at the 2023 ASH (Free ASH Whitepaper) Annual Meeting and Exposition include:

Cell Therapy

First disclosure of efficacy and safety data from the primary analysis of the Phase 2 TRANSCEND FL study of Breyanzi (lisocabtagene maraleucel; liso-cel) for the treatment of patients with high-risk relapsed or refractory follicular lymphoma in the second-line setting. Patient-reported outcomes and health-related quality of life data from this study will also be presented.
First disclosure of Center for International Blood and Marrow Transplant Research registry data showcasing safety and efficacy of Breyanzi in relapsed or refractory large B-cell lymphoma (LBCL) when used in the real world.
Multiple analyses from the Phase 3 KarMMa-3 study evaluating Abecma (idecabtagene vicleucel) in patients with triple-class exposed relapsed and refractory multiple myeloma, including final progression-free survival data, interim overall survival data, safety profile characterization and patient-reported outcomes from extended follow-up.
Updated safety and efficacy results from the Phase 1 study of GPRC5D CAR T (BMS-986393/CC-95266) in patients with relapsed or refractory multiple myeloma, including in patients with prior BCMA-directed therapy.
Targeted Protein Degradation

First results from the Phase 1/2 CC-92480 MM-002 study evaluating CELMoDTM agent mezigdomide with dexamethasone and daratumumab or elotuzumab in patients with relapsed or refractory multiple myeloma.
Updated results from the dose-escalation and dose-expansion components of the Phase 1 CC-220-DLBCL-001 study, evaluating potential first-in-class CELMoD agent golcadomide in combination with R-CHOP in previously untreated diffuse LBCL.
Translational data describing a potential mechanism of reversal of T-cell exhaustion by CELMoD agents, highlighting the potential for CELMoD agents to enhance T-cell redirecting therapies.
Additional Novel Treatment Modalities

Multiple presentations from the Phase 3 COMMANDS study of Reblozyl(luspatercept-aamt) in the treatment of anemia in patients with lower-risk myelodysplastic syndromes who are erythropoiesis stimulating agent-naïve, including primary analysis data, patient-reported outcomes and mutational analysis.
Updated safety and efficacy data for potential best-in-class BET inhibitor BMS-986158 in combination with ruxolitinib or Inrebic (fedratinib) in first- and second-line myelofibrosis.
Updated safety and efficacy data for subcutaneous 2+1 T-cell engager alnuctamab in heavily pretreated multiple myeloma from the Phase 1 CC-93269-MM-001 study.
You can find additional information about BMS’ presence at the meeting on the ASH (Free ASH Whitepaper) website.

Selected Bristol Myers Squibb studies at the 65th ASH (Free ASH Whitepaper) Annual Meeting and Exposition include:

Abstract Title

Author

Presentation
Type/#

Session
Title

Session
Date/Time
(PST)

Beta Thalassemia

Improvement of Underlying Disease Pathophysiology of Ineffective Erythropoiesis in Non-Transfusion-Dependent (NTD) Patients with Beta-Thalassemia Receiving Luspatercept: Biomarker Analysis from the BEYOND Trial

Manuel Ugidos Guerrero

Poster
Presentation
#1104

112. Thalassemia and Globin Gene Regulation: Poster III

Saturday,
December 9,
5:30 – 7:30 PM

Real-World Characteristics, Treatment Utilization, and Transfusion Burden in Patients with β-Thalassemia Initiating Luspatercept: A US Cohort Study

Sujit Sheth

Poster
Presentation
#2476

112. Thalassemia and Globin Gene Regulation: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Durable Symptom Improvement for Patients with Non-Transfusion Dependent Thalassemia Treated with Luspatercept: Patient-Reported Outcomes from the BEYOND Study

Khaled Musallam

Poster
Presentation
#2474

112. Thalassemia and Globin Gene Regulation: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Efficacy and Safety of Luspatercept in Patients Enrolled in the BELIEVE Trial: Data from the Phase 3b Long-Term Rollover Study

Maria Cappellini

Poster
Presentation
#3849

112. Thalassemia and Globin Gene Regulation: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Luspatercept for the Treatment of Anemia in Non-Transfusion-Dependent β-Thalassemia: Final Safety and Efficacy Data from the BEYOND Trial

Ali Taher

Poster
Presentation
#3847

112. Thalassemia and Globin Gene Regulation: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Efficacy and Safety of Luspatercept in Patients with HbE/β‑Thalassemia from the BELIEVE Study: a Subgroup Analysis

Kevin Kuo

Poster
Presentation
#3848

112. Thalassemia and Globin Gene Regulation: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Leukemia

Lisocabtagene Maraleucel (liso-cel) in R/R CLL/SLL: 24-Month Median Follow-up of TRANSCEND CLL 004

Tanya Siddiqi

Oral
Presentation
#330

642. Chronic Lymphocytic Leukemia: Clinical and Epidemiological: New Inhibitors and Cellular Therapies for Treatment of Relapsed CLL

Saturday,
December 9,
5:15 PM

The Total Lifetime Cost of Treating Patients (Pts) with CLL in the United States (US)

Farrukh Awan

Poster
Presentation
#2330

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Undetectable MRD Status in Patients with R/R CLL/SLL with Stable Disease After Lisocabtagene Maraleucel Treatment: Exploratory Analysis of the TRANSCEND CLL 004 Study

Eniko Papp

Poster
Presentation
#3263

641. Chronic Lymphocytic Leukemias: Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Lymphoma

Multicenter, Real-world Study in Patients with R/R Large B-Cell Lymphoma (LBCL) Who Received Lisocabtagene Maraleucel (liso-cel) in the United States (US)

Jennifer Crombie

Oral
Presentation
#104

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Cellular Therapy for B Cell Lymphomas: Prospective Clinical Trials and Real World Data

Saturday,
December 9,
9:45 AM

Lisocabtagene Maraleucel as Second-Line Therapy for R/R Large B-Cell Lymphoma in Patients Not Intended for Hematopoietic Stem Cell Transplant: Final Analysis of the Phase 2 PILOT Study

Alison Sehgal

Oral
Presentation
#105

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Cellular Therapy for B Cell Lymphomas: Prospective Clinical Trials and Real World Data

Saturday,
December 9,
10:00 AM

Circulating Tumor DNA Dynamics as Early Outcome Predictors for Lisocabtagene Maraleucel as Second-Line Therapy for Large B-Cell Lymphoma from the Phase 3 TRANSFORM Study

Lara Stepan

Oral
Presentation
#225

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Translational Data and Prognostic Factors

Saturday,
December 9,
2:30 PM

Pharmacodynamic Biomarkers and CtDNA Support the Mechanism of Action and Clinical Efficacy of Golcadomide (CC-99282) Combined with R-CHOP in Previously Untreated Aggressive B-Cell Lymphoma

Mark Kaplan

Poster
Presentation
#1631

621. Lymphomas: Translational – Molecular and Genetic: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Postinfusion Monitoring Health Care Resource Utilization and Costs by Site of Care Among Inpatients and Outpatients with Relapsed or Refractory Large B-Cell Lymphoma who Received Second-Line Treatment with Lisocabtagene Maraleucel in the TRANSFORM and PILOT Clinical Trials

November McGarvey

Poster
Presentation
#2340

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Matching-Adjusted Indirect Comparison (MAIC) of Efficacy and Safety of Lisocabtagene Maraleucel (liso-cel) and Mosunetuzumab for the Treatment (Tx) of Third Line or Later (3L+) Relapsed or Refractory (R/R) Follicular Lymphoma (FL)

Loretta Nastoupil

Poster
Presentation
#2338

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Patient-Reported Outcomes from the MCL Cohort of the Phase 1, Seamless Design TRANSCEND NHL 001 Study of Lisocabtagene Maraleucel in Patients with R/R B-Cell NHL

Michael Wang

Oral
Presentation
#667

905. Outcomes Research – Lymphoid Malignancies: Patient Reported Outcomes in Hematological Malignancies

Sunday,
December 10,
4:30 PM

TRANSCEND FL: Phase 2 Study Primary Analysis Results of Lisocabtagene Maraleucel in Patients with Second-Line High-risk Relapsed or Refractory Follicular Lymphoma

Franck Morschhauser

Oral
Presentation
#602

623. Mantle Cell, Follicular, and Other Indolent B Cell Lymphomas: Clinical and Epidemiological: Immunotherapy

Sunday,
December 10,
4:45 PM

Patient-Reported Outcomes from the Phase 2 TRANSCEND FL Study of Lisocabtagene Maraleucel in Patients with Relapsed or Refractory Indolent B-Cell Non-Hodgkin Lymphoma

Guillaume Cartron

Oral
Presentation
#668

905. Outcomes Research – Lymphoid Malignancies: Patient Reported Outcomes in Hematological Malignancies

Sunday,
December 10,
4:45 PM

Lisocabtagene Maraleucel (liso-cel) in Patients (Pts) with R/R MCL: Subgroup Analyses in Pts with High-Risk Disease Features from the MCL Cohort of the TRANSCEND NHL 001 Study

Maria Lia Palomba

Poster
Presentation
#3505

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Cytokine Release Syndrome and Neurological Event Management Resource Use and Costs Among Patients with Relapsed or Refractory Large B-Cell Lymphoma Who Received Second-Line Lisocabtagene Maraleucel Treatment in TRANSFORM and PILOT

November McGarvey

Poster
Presentation
#3717

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Golcadomide (GOLCA; CC-99282), a Novel CELMoD Agent, Plus R-CHOP in Patients (pts) with Previously Untreated Aggressive B-Cell Lymphoma (a-BCL): Safety and Efficacy Results from Phase 1b Dose Expansion

Marc Hoffmann

Poster
Presentation
#4459

626. Aggressive Lymphomas: Prospective Therapeutic Trials: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Efficacy and Safety of Golcadomide, a Novel Cereblon E3 Ligase Modulator (CELMoD) Agent, Combined with Rituximab in a Phase 1/2 Open-Label Study of Patients with Relapsed/Refractory Non-Hodgkin Lymphoma

Julio Chavez

Poster
Presentation
#4496

627. Aggressive Lymphomas: Clinical and Epidemiological: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Estimation of Postinfusion Resource Use and Total Costs of Care for Patients with R/R Follicular Lymphoma (FL) Receiving Lisocabtagene Maraleucel (liso-cel) in the TRANSCEND FL Study

Ashley Saunders

Poster
Presentation
#5084

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Multiple Myeloma

Effects of Idecabtagene Vicleucel (Ide-Cel) Versus Standard Regimens on Health-Related Quality of Life (HRQoL) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM) Who Had Received 2–4 Prior Regimens: Updated Results from the Phase 3 KarMMa-3 Trial

Michele Delforge

Oral
Presentation
#96

652. Multiple Myeloma: Clinical and Epidemiological: T Cell Redirecting Therapy Outcomes a nd Associated Complications

Saturday,
December 9,
10:45 AM

BMS-986393 (CC-95266), a G protein–Coupled Receptor Class C Group 5 Member D (GPRC5D)–Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy for Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 Study

Susan Bal

Oral
Presentation
#219

704. Cellular Immunotherapies: Early Phase and Investigational Therapies: Expanding Disease Targets for CAR-T Cell Therapies

Saturday,
December 9,
2:30 PM

Mezigdomide reverses T-Cell exhaustion through degradation of Aiolos/Ikaros and Reinvigoration of cytokine production pathways

Hsiling Chiu

Oral
Presentation
#335

651. Multiple Myeloma and Plasma Cell Dyscrasias: Basic and Translational: Characterization of the MM and the Tumor Microenvironment

Saturday,
December 9,
5:00 PM

Alnuctamab (ALNUC; BMS-986349; CC-93269), a 2+1 B-Cell Maturation Antigen (BCMA) × CD3 T-Cell Engager (TCE), Administered Subcutaneously (SC) in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 First‑in‑Human Clinical Study

Noffar Bar

Poster
Presentation
#2011

653. Multiple Myeloma: Prospective Therapeutic Trials: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Efficacy and Safety of Idecabtagene Vicleucel (ide-cel) in Patients with Clinical High-Risk Newly Diagnosed Multiple Myeloma (MM) with an Inadequate Response to Frontline Autologous Stem Cell Transplantation (ASCT): KarMMa-2 Cohort 2c Extended Follow-up

Madhav Dhodapkar

Poster
Presentation
#2101

704. Cellular Immunotherapies: Early Phase and Investigational Therapies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Patient (pt) Experiences of Receiving Idecabtagene Vicleucel (Ide-Cel, bb2121) Versus Standard (Std) Regimens for the Treatment (Tx) of Relapsed/Refractory Multiple Myeloma (RRMM) in the Randomized, Controlled KarMMa-3 Clinical Trial: Analysis of Longitudinal Qualitative Interviews

Paula Rodriguez Otero

Poster
Presentation
#2385

905. Outcomes Research – Lymphoid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Preclinical and Translational Biomarker Analyses to Inform Clinical Development of Mezigdomide (CC-92480) in Combination with Dexamethasone and Daratumumab in Multiple Myeloma

Tracy Chow

Poster
Presentation
#3318

651. Multiple Myeloma and Plasma Cell Dyscrasias: Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Healthcare Resource Utilization and Economic Burden of Cytokine Release Syndrome and Neurotoxicity in Patients with Relapsed and Refractory Multiple Myeloma (RRMM) Receiving Idecabtagene Vicleucel in Earlier-Line Settings in the KarMMa-3 Clinical Trial

Sikander Ailawadhi

Poster
Presentation
#3712

905. Outcomes Research—Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Clinical Outcomes in Real-World Patients (RW) with Triple-Class Exposed (TCE) Relapsed/Refractory Multiple Myeloma (RRMM): A Retrospective Study using Electronic Health Records from Flatiron Health and COTA Vantage Databases

Hans C Lee

Poster
Presentation
#3775

905. Outcomes Research—Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Treatment Patterns and Outcomes for Patients with Newly Diagnosed Multiple Myeloma Post-Stem Cell Transplantation Who Received Lenalidomide As First Line Maintenance Therapy (PREAMBLE)

Ravi Vij

Poster
Presentation
#3786

905. Outcomes Research—Lymphoid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Effects of Idecabtagene Vicleucel (Ide-Cel) Versus Standard Regimens on Health-Related Quality of Life (HRQoL) in Patients with Triple-Class-Exposed (TCE) Relapsed/Refractory Multiple Myeloma (RRMM) Who Received at Least 3 Lines of Prior Antimyeloma Regimens in the KarMMa-3 Phase 3 Randomized Controlled Trial

Michele Delforge

Oral
Presentation
#1003

652. Multiple Myeloma: Clinical and Epidemiological: Predicting Outcome and Side Effects of Novel Immunotherapies in Multiple Myeloma

Monday,
December 11,
4:30 PM

A Pro-Inflammatory State and Peak Cytokines Are Associated with Toxicity and Early Responses in Real-World Multiple Myeloma Patients Treated with Idecabtagene Vicleucel

Doris Hansen

Oral
Presentation
#1004

652. Multiple Myeloma: Clinical and Epidemiological: Predicting Outcome and Side Effects of Novel Immunotherapies in Multiple Myeloma

Monday,
December 11,
4:45 PM

Idecabtagene Vicleucel (ide-cel) Versus Standard Regimens in Patients (pts) with Triple-Class Exposed (TCE) Relapsed and Refractory Multiple Myeloma (RRMM): Updated Analysis from KarMMa-3

Paula Rodriguez-Otero

Oral
Presentation
#1028

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Cellular Therapy for Multiple Myeloma, B-cell Acute Lymphoblastic Leukemia and B Cell Lymphomas: Clinical Trial and Real World Evidence

Monday,
December 11,
4:45 PM

Mezigdomide (MEZI) Plus Dexamethasone (DEX) and Daratumumab (DARA) or Elotuzumab (ELO) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from the CC-92480-MM-002 Trial

Paul Richardson

Oral
Presentation
#1013

653. Multiple Myeloma: Prospective Therapeutic Trials: Relapsed and Refractory Myeloma

Monday,
December 11,
5:30 PM

RRMM and Post-BCMA Treated Subjects from the CC-220-MM-001 Study Show Increased Genomic Aberrations Associated with High-Risk and Significant Dysfunction in CD4+ T-Cell Compartment Compared to NDMM Subjects

Michael Amatangelo

Poster
Presentation
#4665

651. Multiple Myeloma and Plasma Cell Dyscrasias: Basic and Translational: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Idecabtagene Vicleucel (Ide-cel) versus Standard (std) Regimens in Patients With Triple-Class–Exposed (TCE) Relapsed and Refractory Multiple Myeloma (RRMM): Analysis of Cytopenias and Infections in Patients (pts) From KarMMa-3

Rachid Baz

Poster
Presentation
#4879

705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Facility-Related Healthcare Resource Utilization (HCRU) for Patients Treated with Idecabtagene Vicleucel (Ide-Cel, bb2121) in a Real-World (RW) Setting: A Single-Center Experience

Lauren Peres

Poster
Presentation
#5081

902. Health Services and Quality Improvement – Lymphoid Malignancies: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Myelodysplastic Syndromes

Efficacy and Safety of Luspatercept Versus Epoetin Alfa in Erythropoiesis-Stimulating Agent (ESA)-Naive Patients (Pts) with Transfusion-Dependent (TD) Lower-Risk Myelodysplastic Syndromes (LR-MDS): Full Analysis of the COMMANDS Trial

Guillermo Garcia-Manero

Oral
Presentation
#193

637. Myelodysplastic Syndromes – Clinical and Epidemiological: Treatment Options and Decision Making in Low Risk MDS

Saturday,
December 9,
2:00 PM

GDF11/SMAD Regulated Splicing of GATA1 Is Associated with Response to Luspatercept in Lower-Risk Myelodysplastic Syndromes (LR MDS)

Srinivas Aluri

Oral
Presentation
#318

636. Myelodysplastic Syndromes – Basic and Translational: Molecular Drivers and Therapeutic Implications

Saturday,
December 9,
5:15 PM

Luspatercept Modulates Inflammation in the Bone Marrow, Restores Effective Erythropoiesis/Hematopoiesis, and Provides Sustained Clinical Benefit versus Epoetin Alfa (EA): Biomarker Analysis from the Phase 3 COMMANDS Study

Sheida Hayati

Poster
Presentation
#1845

636. Myelodysplastic Syndromes – Basic and Translational: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

Clonal Hematopoiesis-Related Mutations Are Associated with Favorable Clinical Benefit Following Luspatercept Treatment in Patients with Lower-Risk Myelodysplastic Syndromes: A Subgroup Analysis from the Phase 3 COMMANDS Trial

Maroof Hasan

Poster
Presentation
#3214

636. Myelodysplastic Syndromes—Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Real-World Retrospective Study of Non-Transfusion Dependent Patients with Myelodysplastic Syndromes in a Large Healthcare Claims Database

Leslie Andritsos

Poster
Presentation
#3808

906. Outcomes Research—Myeloid Malignancies: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Long-Term Evaluation of Luspatercept in Erythropoiesis Stimulating Agent (ESA)-Intolerant/Refractory Patients (pts) with Lower-Risk Myelodysplastic Syndromes (LR-MDS) in the Phase 3 MEDALIST Study

Valeria Santini

Oral
Presentation
#915

906. Outcomes Research – Myeloid Malignancies: Symptom Burden and Supportive Therapies

Monday,
December 11,
3:15 PM

Real-World Impact of Luspatercept on Patients with Myelodysplastic Syndromes Requiring Red Blood Cell Transfusions and with Prior Exposure to Erythropoietin Stimulating Agents in a Large Healthcare Claims Database

Kashyap Patel

Oral
Presentation
#916

906. Outcomes Research – Myeloid Malignancies: Symptom Burden and Supportive Therapies

Monday,
December 11,
3:30 PM

Patient-Reported Outcomes (PRO) of Luspatercept Versus Epoetin Alfa in Erythropoiesis-Stimulating Agent (ESA)-Naïve, Transfusion-Dependent (TD), Low-Risk Myelodysplastic Syndromes (MDS): Results from the Phase 3 COMMANDS Study

Esther Oliva

Poster
Presentation
#4596

637. Myelodysplastic Syndromes – Clinical and Epidemiological: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Impact of Genomic Landscape and Mutational Burden on Primary Endpoint Responses in the COMMANDS Study

Rami Komrokji

Poster
Presentation
#4591

636. Myelodysplastic Syndromes—Basic and Translational: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Myelofibrosis

Patient Characteristics, Treatment Patterns, and Health Outcomes in a Real-World Population of Patients with Myelofibrosis Treated with Fedratinib

Francesco Passamonti

Poster
Presentation
#2425

906. Outcomes Research – Myeloid Malignancies: Poster I

Saturday,
December 9,
5:30 – 7:30 PM

BMS-986158, a Potent BET Inhibitor, in Combination with Ruxolitinib or Fedratinib in Patients (pts) with Intermediate- or High-risk Myelofibrosis (MF): Updated Results from a Phase 1/2 Study

David Lavie

Oral
Presentation
#623

634. Myeloproliferative Syndromes: Clinical and Epidemiological: Charting the Future of MPN Therapies

Sunday,
December 10,
5:30 PM

Modulation of Biomarkers by BET Inhibitor, BMS-986158, Including JAK2 Variant Allele Frequency (VAF), Bone Marrow (BM) Fibrosis, and Reversal of Abnormal Cytokine Production in Intermediate- or High-Risk Myelofibrosis (MF)

Si Tuen Lee-Hoeflich

Poster
Presentation
#3158

631. Myeloproliferative Syndromes and Chronic Myeloid Leukemia: Basic and Translational: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Efficacy and Safety of Fedratinib in Patients with Myelofibrosis Previously Treated with Ruxolitinib: Results from the Phase 3 Randomized FREEDOM2 Study

Claire Harrison

Poster
Presentation
#3204

634. Myeloproliferative Syndromes: Clinical and Epidemiological: Poster II

Sunday,
December 10,
6:00 – 8:00 PM

Fedratinib Treatment Reduces the Inflammatory Cytokine Profile and Decreases Exhausted T Cells Correlating with Clinical Response in Patients with Myelofibrosis: Biomarker Analysis from the Phase 3 FREEDOM2 Trial

Danny Jeyaraju

Poster
Presentation
#4526

631. Myeloproliferative Syndromes and Chronic Myeloid Leukemia: Basic and Translational: Poster III

Monday,
December 11,
6:00 – 8:00 PM

Clinical Parameters, Anemia, and Spleen Response in Patients with MF-Related Anemia Treated with Luspatercept: Efficacy Sub-Analysis from the ACE-536-MF-001 Study

Aaron Gerds

Poster
Presentation
#4565

634. Myeloproliferative Syndromes: Clinical and Epidemiological: Poster III

Monday,
December 11,
6:00 – 8:00 PM

BREYANZI U.S. INDICATIONS

BREYANZI (lisocabtagene maraleucel; liso-cel) is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of adult patients with large B-cell lymphoma (LBCL), including diffuse large B-cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma), high-grade B cell lymphoma, primary mediastinal large B-cell lymphoma, and follicular lymphoma grade 3B, who have:

refractory disease to first-line chemoimmunotherapy or relapse within 12 months of first-line chemoimmunotherapy; or refractory disease to first-line chemoimmunotherapy or
relapse after first-line chemoimmunotherapy and are not eligible for hematopoietic stem cell transplantation (HSCT) due to comorbidities or age; or
relapsed or refractory disease after two or more lines of systemic therapy.
Limitations of Use: BREYANZI is not indicated for the treatment of patients with primary central nervous system lymphoma.

Important Safety Information

BOXED WARNING: CYTOKINE RELEASE SYNDROME and NEUROLOGIC TOXICITIES

Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients receiving BREYANZI. Do not administer BREYANZI to patients with active infection or inflammatory disorders. Treat severe or life-threatening CRS with tocilizumab with or without corticosteroids.
Neurologic toxicities, including fatal or life-threatening reactions, occurred in patients receiving BREYANZI, including concurrently with CRS, after CRS resolution or in the absence of CRS. Monitor for neurologic events after treatment with BREYANZI. Provide supportive care and/or corticosteroids as needed.
BREYANZI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the BREYANZI REMS.
Cytokine Release Syndrome

Cytokine release syndrome (CRS), including fatal or life-threatening reactions, occurred following treatment with BREYANZI. Among patients receiving BREYANZI for LBCL (N=418), CRS occurred in 46% (190/418), including ≥ Grade 3 CRS (Lee grading system) in 3.1% of patients.

In patients receiving BREYANZI after two or more lines of therapy for LBCL, CRS occurred in 46% (122/268), including ≥ Grade 3 CRS in 4.1% of patients. One patient had fatal CRS and 2 had ongoing CRS at time of death. The median time to onset was 5 days (range: 1 to 15 days). CRS resolved in 98% with a median duration of 5 days (range: 1 to 17 days).

In patients receiving BREYANZI after one line of therapy for LBCL, CRS occurred in 45% (68/150), including Grade 3 CRS in 1.3% of patients. The median time to onset was 4 days (range: 1 to 63 days). CRS resolved in all patients with a median duration of 4 days (range: 1 to 16 days).

The most common manifestations of CRS (≥10%) included fever (94%), hypotension (42%), tachycardia (28%), chills (23%), hypoxia (16%), and headache (12%).

Serious events that may be associated with CRS include cardiac arrhythmias (including atrial fibrillation and ventricular tachycardia), cardiac arrest, cardiac failure, diffuse alveolar damage, renal insufficiency, capillary leak syndrome, hypotension, hypoxia, and hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS).

Ensure that 2 doses of tocilizumab are available prior to infusion of BREYANZI.

Of the 418 patients who received BREYANZI for LBCL, 23% received tocilizumab and/or a corticosteroid for CRS, including 10% who received tocilizumab only and 2.2% who received corticosteroids only.

Neurologic Toxicities

Neurologic toxicities that were fatal or life-threatening, including immune effector cell-associated neurotoxicity syndrome (ICANS), occurred following treatment with BREYANZI. Serious events including cerebral edema and seizures occurred with BREYANZI. Fatal and serious cases of leukoencephalopathy, some attributable to fludarabine, also occurred.

In patients receiving BREYANZI after two or more lines of therapy for LBCL, CAR T cell-associated neurologic toxicities occurred in 35% (95/268), including ≥ Grade 3 in 12% of patients. Three patients had fatal neurologic toxicity and 7 had ongoing neurologic toxicity at time of death. The median time to onset of neurotoxicity was 8 days (range: 1 to 46 days). Neurologic toxicities resolved in 85% with a median duration of 12 days (range: 1 to 87 days).

In patients receiving BREYANZI after one line of therapy for LBCL, CAR T cell-associated neurologic toxicities occurred in 27% (41/150) of patients, including Grade 3 cases in 7% of patients. The median time to onset of neurologic toxicities was 8 days (range: 1 to 63 days). The median duration of neurologic toxicity was 6 days (range: 1 to 119 days).

In all patients combined receiving BREYANZI for LBCL, neurologic toxicities occurred in 33% (136/418), including ≥ Grade 3 cases in 10% of patients. The median time to onset was 8 days (range: 1 to 63), with 87% of cases developing by 16 days. Neurologic toxicities resolved in 85% of patients with a median duration of 11 days (range: 1 to 119 days). Of patients developing neurotoxicity, 77% (105/136) also developed CRS.

The most common neurologic toxicities (≥ 5%) included encephalopathy (20%), tremor (13%), aphasia (8%), headache (6%), dizziness (6%), and delirium (5%).

CRS and Neurologic Toxicities Monitoring

Monitor patients daily for at least 7 days following BREYANZI infusion at a REMS-certified healthcare facility for signs and symptoms of CRS and neurologic toxicities and assess for other causes of neurological symptoms. Monitor patients for signs and symptoms of CRS and neurologic toxicities for at least 4 weeks after infusion and treat promptly. At the first sign of CRS, institute treatment with supportive care, tocilizumab, or tocilizumab and corticosteroids as indicated. Manage neurologic toxicity with supportive care and/or corticosteroid as needed. Counsel patients to seek immediate medical attention should signs or symptoms of CRS or neurologic toxicity occur at any time.

BREYANZI REMS

Because of the risk of CRS and neurologic toxicities, BREYANZI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the BREYANZI REMS. The required components of the BREYANZI REMS are:

Healthcare facilities that dispense and administer BREYANZI must be enrolled and comply with the REMS requirements.
Certified healthcare facilities must have on-site, immediate access to tocilizumab.
Ensure that a minimum of 2 doses of tocilizumab are available for each patient for infusion within 2 hours after BREYANZI infusion, if needed for treatment of CRS.
Certified healthcare facilities must ensure that healthcare providers who prescribe, dispense, or administer BREYANZI are trained on the management of CRS and neurologic toxicities.
Further information is available at www.BreyanziREMS.com, or contact Bristol-Myers Squibb at 1-888-423-5436.

Hypersensitivity Reactions

Allergic reactions may occur with the infusion of BREYANZI. Serious hypersensitivity reactions, including anaphylaxis, may be due to dimethyl sulfoxide (DMSO).

Serious Infections

Severe infections, including life-threatening or fatal infections, have occurred in patients after BREYANZI infusions.

In patients receiving BREYANZI for LBCL, infections of any grade occurred in 36% with Grade 3 or higher infections occurring in 12% of all patients. Grade 3 or higher infections with an unspecified pathogen occurred in 7%, bacterial infections occurred in 4.3%, viral infections in 1.9% and fungal infections in 0.5%.

Febrile neutropenia developed after BREYANZI infusion in 8% of patients with LBCL. Febrile neutropenia may be concurrent with CRS. In the event of febrile neutropenia, evaluate for infection and manage with broad spectrum antibiotics, fluids, and other supportive care as medically indicated.

Monitor patients for signs and symptoms of infection before and after BREYANZI administration and treat appropriately. Administer prophylactic antimicrobials according to standard institutional guidelines.

Avoid administration of BREYANZI in patients with clinically significant active systemic infections.

Viral reactivation: Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, can occur in patients treated with drugs directed against B cells.

In patients who received BREYANZI for LBCL, 15 of the 16 patients with a prior history of HBV were treated with concurrent antiviral suppressive therapy. Perform screening for HBV, HCV, and HIV in accordance with clinical guidelines before collection of cells for manufacturing. In patients with prior history of HBV, consider concurrent antiviral suppressive therapy to prevent HBV reactivation per standard guidelines.

Prolonged Cytopenias

Patients may exhibit cytopenias not resolved for several weeks following lymphodepleting chemotherapy and BREYANZI infusion.

Grade 3 or higher cytopenias persisted at Day 29 following BREYANZI infusion in 36% of patients with LBCL and included thrombocytopenia in 28%, neutropenia in 21%, and anemia in 6%.

Monitor complete blood counts prior to and after BREYANZI administration.

Hypogammaglobulinemia

B-cell aplasia and hypogammaglobulinemia can occur in patients receiving treatment with BREYANZI.

In patients receiving BREYANZI for LBCL, hypogammaglobulinemia was reported as an adverse reaction in 11% of patients. Hypogammaglobulinemia, either as an adverse reaction or laboratory IgG level below 500 mg/dL after infusion, was reported in 28% of patients.

Monitor immunoglobulin levels after treatment with BREYANZI and manage using infection precautions, antibiotic prophylaxis, and immunoglobulin replacement as clinically indicated.

Live vaccines: The safety of immunization with live viral vaccines during or following BREYANZI treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during BREYANZI treatment, and until immune recovery following treatment with BREYANZI.

Secondary Malignancies

Patients treated with BREYANZI may develop secondary malignancies. Monitor lifelong for secondary malignancies. In the event that a secondary malignancy occurs, contact Bristol-Myers Squibb at 1-888-805-4555 for reporting and to obtain instructions on collection of patient samples for testing.

Effects on Ability to Drive and Use Machines

Due to the potential for neurologic events, including altered mental status or seizures, patients receiving BREYANZI are at risk for developing altered or decreased consciousness or impaired coordination in the 8 weeks following BREYANZI administration. Advise patients to refrain from driving and engaging in hazardous occupations or activities, such as operating heavy or potentially dangerous machinery, for at least 8 weeks.

Adverse Reactions

The most common nonlaboratory adverse reactions (incidence ≥ 30%) are fever, CRS, fatigue, musculoskeletal pain, and nausea.

The most common Grade 3-4 laboratory abnormalities (≥ 30%) include lymphocyte count decrease, neutrophil count decrease, platelet count decrease, and hemoglobin decrease.

Please see full Prescribing Information, including Boxed WARNINGS and Medication Guide.

ABECMA U.S. INDICATION

ABECMA (idecabtagene vicleucel) is a B-cell maturation antigen (BCMA)-directed genetically modified autologous T cell immunotherapy indicated for the treatment of adult patients with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody.

IMPORTANT SAFETY INFORMATION

BOXED WARNING: CYTOKINE RELEASE SYNDROME, NEUROLOGIC TOXICITIES, HLH/MAS, AND PROLONGED CYTOPENIA

Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients following treatment with ABECMA. Do not administer ABECMA to patients with active infection or inflammatory disorders. Treat severe or life-threatening CRS with tocilizumab or tocilizumab and corticosteroids.
Neurologic Toxicities, which may be severe or life-threatening, occurred following treatment with ABECMA, including concurrently with CRS, after CRS resolution, or in the absence of CRS. Monitor for neurologic events after treatment with ABECMA. Provide supportive care and/or corticosteroids as needed.
Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome (HLH/MAS) including fatal and life-threatening reactions, occurred in patients following treatment with ABECMA. HLH/MAS can occur with CRS or neurologic toxicities.
Prolonged Cytopenia with bleeding and infection, including fatal outcomes following stem cell transplantation for hematopoietic recovery, occurred following treatment with ABECMA.
ABECMA is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the ABECMA REMS.
Warnings and Precautions:

Cytokine Release Syndrome (CRS): CRS, including fatal or life-threatening reactions, occurred following treatment with ABECMA in 85% (108/127) of patients. Grade 3 or higher CRS occurred in 9% (12/127) of patients, with Grade 5 CRS reported in one (0.8%) patient. The median time to onset of CRS, any grade, was 1 day (range: 1 – 23 days) and the median duration of CRS was 7 days (range: 1 – 63 days). The most common manifestations included pyrexia, hypotension, tachycardia, chills, hypoxia, fatigue, and headache. Grade 3 or higher events that may be associated with CRS include hypotension, hypoxia, hyperbilirubinemia, hypofibrinogenemia, acute respiratory distress syndrome (ARDS), atrial fibrillation, hepatocellular injury, metabolic acidosis, pulmonary edema, multiple organ dysfunction syndrome, and HLH/MAS.

Identify CRS based on clinical presentation. Evaluate for and treat other causes of fever, hypoxia, and hypotension. CRS has been reported to be associated with findings of HLH/MAS, and the physiology of the syndromes may overlap. In patients with progressive symptoms of CRS or refractory CRS despite treatment, evaluate for evidence of HLH/MAS.

Fifty four percent (68/127) of patients received tocilizumab (single dose: 35%; more than 1 dose: 18%). Overall, 15% (19/127) of patients received at least 1 dose of corticosteroids for treatment of CRS. All patients that received corticosteroids for CRS received tocilizumab. Ensure that a minimum of 2 doses of tocilizumab are available prior to infusion of ABECMA.

Monitor patients at least daily for 7 days following ABECMA infusion at the REMS-certified healthcare facility for signs or symptoms of CRS and monitor patients for signs or symptoms of CRS for at least 4 weeks after ABECMA infusion. At the first sign of CRS, institute treatment with supportive care, tocilizumab and/or corticosteroids as indicated.

Counsel patients to seek immediate medical attention should signs or symptoms of CRS occur at any time.

Neurologic Toxicities: Neurologic toxicities, which may be severe or life-threatening, occurred following treatment with ABECMA in 28% (36/127) of patients receiving ABECMA, including Grade 3 in 4% (5/127) of patients. One patient had ongoing Grade 2 neurotoxicity at the time of death. Two patients had ongoing Grade 1 tremor at the time of data cutoff. The median time to onset of neurotoxicity was 2 days (range: 1 – 42 days). CAR T cell-associated neurotoxicity resolved in 92% (33/36) of patients with a median time to resolution of 5 days (range: 1 – 61 days). The median duration of neurotoxicity was 6 days (range: 1 – 578) in all patients including 3 patients with ongoing neurotoxicity. Thirty-four patients with neurotoxicity had CRS with onset in 3 patients before, 29 patients during, and 2 patients after CRS. The most frequently reported manifestations of CAR T cell-associated neurotoxicity include encephalopathy, tremor, aphasia, and delirium. Grade 4 neurotoxicity and cerebral edema in 1 patient, Grade 3 myelitis, and Grade 3 parkinsonism have been reported with ABECMA in another study in multiple myeloma.

Monitor patients at least daily for 7 days following ABECMA infusion at the REMS-certified healthcare facility for signs or symptoms of neurologic toxicities and monitor patients for signs or symptoms of neurologic toxicities for at least 4 weeks after ABECMA infusion and treat promptly. Rule out other causes of neurologic symptoms. Neurologic toxicity should be managed with supportive care and/or corticosteroids as needed.

Counsel patients to seek immediate medical attention should signs or symptoms occur at any time.

Hemophagocytic Lymphohistiocytosis (HLH)/Macrophage Activation Syndrome (MAS): HLH/MAS occurred in 4% (5/127) of patients receiving ABECMA. One patient developed fatal multi-organ HLH/MAS with CRS and another patient developed fatal bronchopulmonary aspergillosis with contributory HLH/MAS. Three cases of Grade 2 HLH/MAS resolved. All events of HLH/MAS had onset within 10 days of receiving ABECMA with a median onset of 7 days (range: 4 – 9 days) and occurred in the setting of ongoing or worsening CRS. Two patients with HLH/MAS had overlapping neurotoxicity. The manifestations of HLH/MAS include hypotension, hypoxia, multiple organ dysfunction, renal dysfunction, and cytopenia. HLH/MAS is a potentially life-threatening condition with a high mortality rate if not recognized early and treated. Treatment of HLH/MAS should be administered per institutional guidelines.

ABECMA REMS: Due to the risk of CRS and neurologic toxicities, ABECMA is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the ABECMA REMS. Further information is available at www.AbecmaREMS.com or 1-888-423-5436.

Hypersensitivity Reactions: Allergic reactions may occur with the infusion of ABECMA. Serious hypersensitivity reactions, including anaphylaxis, may be due to dimethyl sulfoxide (DMSO) in ABECMA.

Infections: ABECMA should not be administered to patients with active infections or inflammatory disorders. Severe, life-threatening, or fatal infections occurred in patients after ABECMA infusion. Infections (all grades) occurred in 70% of patients. Grade 3 or 4 infections occurred in 23% of patients. Overall, 4 patients had Grade 5 infections (3%); 2 patients (1.6%) had Grade 5 events of pneumonia, 1 patient (0.8%) had Grade 5 bronchopulmonary aspergillosis, and 1 patient (0.8%) had cytomegalovirus (CMV) pneumonia associated with Pneumocystis jirovecii. Monitor patients for signs and symptoms of infection before and after ABECMA infusion and treat appropriately. Administer prophylactic, pre-emptive, and/or therapeutic antimicrobials according to standard institutional guidelines.

Febrile neutropenia was observed in 16% (20/127) of patients after ABECMA infusion and may be concurrent with CRS. In the event of febrile neutropenia, evaluate for infection and manage with broad-spectrum antibiotics, fluids, and other supportive care.

Viral Reactivation: CMV infection resulting in pneumonia and death has occurred following ABECMA administration. Monitor and treat for CMV reactivation in accordance with clinical guidelines. Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, can occur in patients treated with drugs directed against plasma cells. Perform screening for CMV, HBV, hepatitis C virus (HCV), and human immunodeficiency virus (HIV) in accordance with clinical guidelines before collection of cells for manufacturing.

Prolonged Cytopenias: In the clinical study, 41% of patients (52/127) experienced prolonged Grade 3 or 4 neutropenia and 49% (62/127) experienced prolonged Grade 3 or 4 thrombocytopenia that had not resolved by Month 1 following ABECMA infusion. In 83% (43/52) of patients who recovered from Grade 3 or 4 neutropenia after Month 1, the median time to recovery from ABECMA infusion was 1.9 months. In 65% (40/62) of patients who recovered from Grade 3 or 4 thrombocytopenia, the median time to recovery was 2.1 months.

Three patients underwent stem cell therapy for hematopoietic reconstitution due to prolonged cytopenia. Two of the three patients died from complications of prolonged cytopenia. Monitor blood counts prior to and after ABECMA infusion. Manage cytopenia with myeloid growth factor and blood product transfusion support.

Hypogammaglobulinemia: Hypogammaglobulinemia was reported as an adverse event in 21% (27/127) of patients; laboratory IgG levels fell below 500 mg/dl after infusion in 25% (32/127) of patients treated with ABECMA.

Monitor immunoglobulin levels after treatment with ABECMA and administer IVIG for IgG <400 mg/dl. Manage appropriately per local institutional guidelines, including infection precautions and antibiotic or antiviral prophylaxis.

The safety of immunization with live viral vaccines during or after ABECMA treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during ABECMA treatment, and until immune recovery following treatment with ABECMA.

Secondary Malignancies: Patients treated with ABECMA may develop secondary malignancies. Monitor life-long for secondary malignancies. If a secondary malignancy occurs, contact Bristol-Myers Squibb at 1-888-805-4555 to obtain instructions on patient samples to collect for testing of secondary malignancy of T cell origin.

Effects on Ability to Drive and Operate Machinery: Due to the potential for neurologic events, patients receiving ABECMA are at risk for altered or decreased consciousness or coordination in the 8 weeks following ABECMA infusion. Advise patients to refrain from driving and engaging in hazardous occupations or activities, such as operating heavy or potentially dangerous machinery, during this initial period.

Adverse Reactions: The most common nonlaboratory adverse reactions include CRS, infections – pathogen unspecified, fatigue, musculoskeletal pain, hypogammaglobulinemia, diarrhea, upper respiratory tract infection, nausea, viral infections, encephalopathy, edema, pyrexia, cough, headache, and decreased appetite.

Please see full Prescribing Information, including Boxed WARNINGS and Medication Guide.

REBLOZYL U.S. INDICATIONS

REBLOZYL (luspatercept-aamt), a first-in-class therapeutic option, promotes late-stage red blood cell maturation in animal models.REBLOZYL is being developed and commercialized through a global collaboration and North American co-promotion with Merck following Merck’s acquisition of Acceleron Pharma, Inc. in November 2021. REBLOZYL is indicated in the U.S. for the treatment of:

anemia in adult patients with beta thalassemia who require regular red blood cell (RBC) transfusions, and
anemia without previous erythropoiesis stimulating agent use (ESA-naïve) in adult patients with very low- to intermediate-risk myelodysplastic syndromes (MDS) who may require regular red blood cell (RBC) transfusions.
anemia failing an erythropoiesis stimulating agent and requiring 2 or more red blood cell (RBC) units over 8 weeks in adult patients with very low- to intermediate-risk myelodysplastic syndrome with ring sideroblasts (MDS-RS) or with myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T).
REBLOZYL is not indicated for use as a substitute for RBC transfusions in patients who require immediate correction of anemia. In the U.S., REBLOZYL is not indicated for use in patients with non-transfusion-dependent beta thalassemia.

Important Safety Information

WARNINGS AND PRECAUTIONS

Thrombosis/Thromboembolism

In adult patients with beta thalassemia, thromboembolic events (TEE) were reported in 8/223 (3.6%) of REBLOZYL-treated patients. TEEs included deep vein thrombosis, pulmonary embolus, portal vein thrombosis, and ischemic stroke. Patients with known risk factors for thromboembolism (splenectomy or concomitant use of hormone replacement therapy) may be at further increased risk of thromboembolic conditions. Consider thromboprophylaxis in patients at increased risk of TEE. Monitor patients for signs and symptoms of thromboembolic events and institute treatment promptly.

Hypertension

Hypertension was reported in 11.4% (63/554) of REBLOZYL-treated patients. Across clinical studies, the incidence of Grade 3 to 4 hypertension ranged from 2% to 9.6%. In patients with beta thalassemia with normal baseline blood pressure, 13 (6.2%) patients developed systolic blood pressure (SBP) ≥130 mm Hg and 33 (16.6%) patients developed diastolic blood pressure (DBP) ≥80 mm Hg. In ESA-refractory or -intolerant adult patients with MDS with normal baseline blood pressure, 26 (30%) patients developed SBP ≥130 mm Hg and 23 (16%) patients developed DBP ≥80 mm Hg. In ESA-naïve adult patients with MDS with normal baseline blood pressure, 23 (36%) patients developed SBP ≥140 mm Hg and 11 (6%) patients developed DBP ≥80 mm Hg. Monitor blood pressure prior to each administration. Manage new or exacerbations of preexisting hypertension using anti-hypertensive agents.

Extramedullary Hematopoietic (EMH) Masses

In adult patients with transfusion-dependent beta thalassemia, EMH masses were observed in 3.2% of REBLOZYL-treated patients, with spinal cord compression symptoms due to EMH masses occurring in 1.9% of patients (BELIEVE and REBLOZYL long-term follow-up study).

In a study of adult patients with non-transfusion-dependent beta thalassemia, a higher incidence of EMH masses was observed in 6.3% of REBLOZYL-treated patients vs. 2% of placebo-treated patients in the double-blind phase of the study, with spinal cord compression due to EMH masses occurring in 1 patient with a prior history of EMH. REBLOZYL is not indicated for use in patients with non-transfusion-dependent beta thalassemia.

Possible risk factors for the development of EMH masses in patients with beta thalassemia include history of EMH masses, splenectomy, splenomegaly, hepatomegaly, or low baseline hemoglobin (<8.5 g/dL). Signs and symptoms may vary depending on the anatomical location. Monitor patients with beta thalassemia at initiation and during treatment for symptoms and signs or complications resulting from the EMH masses and treat according to clinical guidelines. Discontinue treatment with REBLOZYL in case of serious complications due to EMH masses. Avoid use of REBLOZYL in patients requiring treatment to control the growth of EMH masses.

Embryo-Fetal Toxicity

REBLOZYL may cause fetal harm when administered to a pregnant woman. REBLOZYL caused increased post-implantation loss, decreased litter size, and an increased incidence of skeletal variations in pregnant rat and rabbit studies. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment and for at least 3 months after the final dose.

ADVERSE REACTIONS

Beta-Thalassemia

Serious adverse reactions occurred in 3.6% of patients on REBLOZYL. Serious adverse reactions occurring in 1% of patients included cerebrovascular accident and deep vein thrombosis. A fatal adverse reaction occurred in 1 patient treated with REBLOZYL who died due to an unconfirmed case of acute myeloid leukemia (AML).

Most common adverse reactions (at least 10% for REBLOZYL and 1% more than placebo) were headache (26% vs 24%), bone pain (20% vs 8%), arthralgia (19% vs 12%), fatigue (14% vs 13%), cough (14% vs 11%), abdominal pain (14% vs 12%), diarrhea (12% vs 10%) and dizziness (11% vs 5%).

ESA-naïve adult patients with Myelodysplastic Syndromes

Grade ≥3 (≥2%) adverse reactions included hypertension and dyspnea.

The most common (≥10%) all-grade adverse reactions included diarrhea, fatigue, hypertension, peripheral edema, nausea, and dyspnea.

ESA-refractory or -intolerant adult patients with Myelodysplastic Syndromes

Grade ≥3 (≥2%) adverse reactions included fatigue, hypertension, syncope and musculoskeletal pain. A fatal adverse reaction occurred in 5 (2.1%) patients.

The most common (≥10%) adverse reactions included fatigue, musculoskeletal pain, dizziness, diarrhea, nausea, hypersensitivity reactions, hypertension, headache, upper respiratory tract infection, bronchitis, and urinary tract infection.

LACTATION

It is not known whether REBLOZYL is excreted into human milk or absorbed systemically after ingestion by a nursing infant. REBLOZYL was detected in milk of lactating rats. When a drug is present in animal milk, it is likely that the drug will be present in human milk. Because many drugs are excreted in human milk, and because of the unknown effects of REBLOZYL in infants, a decision should be made whether to discontinue nursing or to discontinue treatment. Because of the potential for serious adverse reactions in the breastfed child, breastfeeding is not recommended during treatment and for 3 months after the last dose.

DRUG ABUSE POTENTIAL

Abuse: Abuse of REBLOZYL may be seen in athletes for the effects on erythropoiesis. Misuse of drugs that increase erythropoiesis, such as REBLOZYL, by healthy persons may lead to polycythemia, which may be associated with life-threatening cardiovascular complications.

Please see accompanying U.S. Full Prescribing Information for REBLOZYL.

INREBIC

INDICATION

INREBIC (fedratinib) is indicated for the treatment of adult patients with intermediate-2 or high-risk primary or secondary (post-polycythemia vera or post-essential thrombocythemia) myelofibrosis (MF).

IMPORTANT SAFETY INFORMATION

BOXED WARNING: ENCEPHALOPATHY INCLUDING WERNICKE’S

Serious and fatal encephalopathy, including Wernicke’s, has occurred in patients treated with INREBIC. Wernicke’s encephalopathy is a neurologic emergency. Assess thiamine levels in all patients prior to starting INREBIC, periodically during treatment, and as clinically indicated. Do not start INREBIC in patients with thiamine deficiency; replete thiamine prior to treatment initiation. If encephalopathy is suspected, immediately discontinue INREBIC and initiate parenteral thiamine. Monitor until symptoms resolve or improve and thiamine levels normalize.

WARNINGS AND PRECAUTIONS

Encephalopathy, including Wernicke’s: Serious and fatal encephalopathy, including Wernicke’s encephalopathy, has been reported in 1.3% (8/608) of patients treated with INREBIC in clinical trials and 0.16% (1/608) of cases were fatal.

Wernicke’s encephalopathy is a neurologic emergency resulting from thiamine (Vitamin B1) deficiency. Signs and symptoms of Wernicke’s encephalopathy may include ataxia, mental status changes, and ophthalmoplegia (e.g., nystagmus, diplopia). Any change in mental status, confusion, or memory impairment should raise concern for potential encephalopathy, including Wernicke’s, and prompt a full evaluation including a neurologic examination, assessment of thiamine levels, and imaging. Assess thiamine levels in all patients prior to starting INREBIC, periodically during treatment, and as clinically indicated. Do not start INREBIC in patients with thiamine deficiency; replete thiamine prior to treatment initiation. If encephalopathy is suspected, immediately discontinue INREBIC and initiate parenteral thiamine. Monitor until symptoms resolve or improve and thiamine levels normalize.

Anemia: New or worsening Grade 3 anemia occurred in 34% of INREBIC-treated patients. The median time to onset of the first Grade 3 anemia was approximately 2 months, with 75% of cases occurring within 3 months. Mean hemoglobin levels reached nadir after 12 to 16 weeks with partial recovery and stabilization after 16 weeks. Red blood cell transfusions were received by 51% of INREBIC-treated patients and permanent discontinuation of INREBIC occurred due to anemia in 1% of patients. Consider dose reduction for patients who become red blood cell transfusion dependent.

Thrombocytopenia: New or worsening Grade ≥3 thrombocytopenia during the randomized treatment period occurred in 12% of INREBIC-treated patients. The median time to onset of the first Grade 3 thrombocytopenia was approximately 1 month; with 75% of cases occurring within 4 months. Platelet transfusions were received by 3.1% of INREBIC-treated patients. Permanent discontinuation of treatment due to thrombocytopenia and bleeding that required clinical intervention both occurred in 2.1% of INREBIC-treated patients. Obtain a complete blood count (CBC) at baseline, periodically during treatment, and as clinically indicated. For Grade 3 thrombocytopenia with active bleeding or Grade 4 thrombocytopenia, interrupt INREBIC until resolved to less than or equal to Grade 2 or baseline. Restart dose at 100 mg daily below the last given dose and monitor platelets as clinically indicated.

Gastrointestinal Toxicity: Gastrointestinal toxicities are the most frequent adverse reactions in INREBIC-treated patients. During the randomized treatment period, diarrhea occurred in 66% of patients, nausea in 62% of patients, and vomiting in 39% of patients. Grade 3 diarrhea 5% and vomiting 3.1% occurred. The median time to onset of any grade nausea, vomiting, and diarrhea was 1 day, with 75% of cases occurring within 2 weeks of treatment. Consider providing appropriate prophylactic anti-emetic therapy (e.g., 5-HT3 receptor antagonists) during INREBIC treatment. Treat diarrhea with anti-diarrheal medications promptly at the first onset of symptoms. Grade 3 or higher nausea, vomiting, or diarrhea not responsive to supportive measures within 48 hours, interrupt INREBIC until resolved to Grade 1 or less or baseline. Restart dose at 100 mg daily below the last given dose. Monitor thiamine levels and replete as needed.

Hepatic Toxicity: Elevations of ALT and AST (all grades) during the randomized treatment period occurred in 43% and 40%, respectively, with Grade 3 or 4 in 1% and 0%, respectively, of INREBIC-treated patients. The median time to onset of any grade transaminase elevation was approximately 1 month, with 75% of cases occurring within 3 months. Monitor hepatic function at baseline, periodically during treatment, and as clinically indicated. For Grade 3 or higher ALT and/or AST elevations (greater than 5 × ULN), interrupt INREBIC dose until resolved to Grade 1 or less or to baseline. Restart dose at 100 mg daily below the last given dose. If re-occurrence of a Grade 3 or higher elevation of ALT/AST, discontinue treatment with INREBIC.

Amylase and Lipase Elevation: Grade 3 or higher amylase 2% and/or lipase 10% elevations developed in INREBIC-treated patients. The median time to onset of any grade amylase or lipase elevation was 15 days, with 75% of cases occurring within 1 month of starting treatment. One patient developed pancreatitis in the fedratinib clinical development program (n=608) and pancreatitis resolved with treatment discontinuation. Monitor amylase and lipase at baseline, periodically during treatment, and as clinically indicated. For Grade 3 or higher amylase and/or lipase elevations, interrupt INREBIC until resolved to Grade 1 or less or to baseline. Restart dose at 100 mg daily below the last given dose.

Major Adverse Cardiac Events (MACE): Another JAK inhibitor has increased the risk of MACE, including cardiovascular death, myocardial infarction, and stroke in patients with rheumatoid arthritis (compared to those treated with TNF blockers), a condition for which INREBIC is not indicated. Consider the benefits and risks of the individual patients prior to initiating or continuing therapy with INREBIC, particularly in patients who are current or past smokers, or have other cardiovascular risk factors. Patients should be informed about the symptoms of serious cardiovascular events and what to do if they occur.

Thrombosis: Another JAK inhibitor has increased the risk of thrombosis, including deep venous thrombosis, pulmonary embolism, and arterial thrombosis in patients with rheumatoid arthritis (compared to those treated with TNF blockers), a condition for which INREBIC is not indicated. In patients with MF treated with INREBIC in clinical trials, the rates of thromboembolic events were similar in INREBIC and placebo treated patients. Patients with symptoms of thrombosis should be promptly evaluated and treated appropriately.

Secondary Malignancies: Another JAK inhibitor has increased the risk of lymphoma and other malignancies excluding nonmelanoma skin cancer (NMSC) in patients with rheumatoid arthritis, a condition for which INREBIC is not indicated. Patients who are current or past smokers are at additional increased risk. Consider the benefits and risks for the individual patient prior to initiating or continuing therapy with INREBIC, particularly in patients with a known malignancy (other than a successfully treated NMSC), patients who develop a malignancy, and patients who are current or past smokers.

ADVERSE REACTIONS

The most common adverse reactions for INREBIC treated vs. placebo were diarrhea (66% vs. 16%), nausea (62% vs. 15%), anemia (40% vs. 14%), and vomiting (39% vs. 5%). Dosage interruptions due to an adverse reaction during the randomized treatment period occurred in 21% of patients who received INREBIC. Adverse reactions requiring dosage interruption in >3% of patients who received INREBIC included diarrhea and nausea. Dosage reductions due to an adverse reaction during the randomized treatment period occurred in 19% of patients who received INREBIC. Adverse reactions requiring dosage reduction in >2% of patients who received INREBIC included anemia (6%), diarrhea (3%), vomiting (3%), and thrombocytopenia (2%).

DRUG INTERACTIONS

Coadministration of INREBIC with a strong CYP3A4 inhibitor increases fedratinib exposure. Increased exposure may increase the risk of adverse reactions. Consider alternative therapies that do not strongly inhibit CYP3A4 activity. Alternatively, reduce the dose of INREBIC when administering with a strong CYP3A4 inhibitor. Avoid INREBIC with strong and moderate CYP3A4 inducers. Avoid INREBIC with dual CYP3A4 and CYP2C19 inhibitor. Coadministration of INREBIC with drugs that are CYP3A4 substrates, CYP2C19 substrates, or CYP2D6 substrates increases the concentrations of these drugs, which may increase the risk of adverse reactions of these drugs. Monitor for adverse reactions and adjust the dose of drugs that are CYP3A4, CYP2C19, or CYP2D6 substrates as necessary when coadministered with INREBIC.

PREGNANCY/LACTATION

Consider the benefits and risks of INREBIC for the mother and possible risks to the fetus when prescribing INREBIC to a pregnant woman. Due to the potential for serious adverse reactions in a breastfed child, advise patients not to breastfeed during treatment with INREBIC, and for at least 1 month after the last dose.

RENAL IMPAIRMENT

Reduce INREBIC dose when administered to patients with severe renal impairment. No modification of the starting dose is recommended for patients with mild to moderate renal impairment. Due to potential increase of exposure, patients with preexisting moderate renal impairment require more intensive safety monitoring, and if necessary, dose modifications based on adverse reactions.

HEPATIC IMPAIRMENT

Avoid use of INREBIC in patients with severe hepatic impairment.

Please see full Prescribing Information, including Boxed WARNING, and Summary of Product Characteristics for INREBIC.

BridgeBio Pharma Reports Third Quarter 2023 Financial Results and Business Update

On November 2, 2023 BridgeBio Pharma, Inc. (Nasdaq: BBIO) (BridgeBio or the Company), a commercial-stage biopharmaceutical company focused on genetic diseases and cancers, reported its financial results for the third quarter ended September 30, 2023, and provided an update on the Company’s operations (Press release, BridgeBio, NOV 2, 2023, View Source [SID1234636740]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We continue to be extremely grateful to the patient and physician communities with whom we collaborate; their partnership has helped us to realize tremendous advancement recently across the programs that make up our portfolio," said Neil Kumar, Ph.D., founder and CEO of BridgeBio. "We are excited about the progress from our late-stage pipeline, and have begun to highlight areas of differentiation for the upcoming, potentially blockbuster launch of our ATTR-CM asset. In particular, recent real-world evidence on ATTR-CM therapies presented at the HFSA scientific sessions suggests that the survival levels observed on acoramidis treatment in our Phase 3 study are indeed differentiated even in the context of the contemporary care setting as compared to other agents in the field. This continues to reinforce our hypothesis that better stabilization leads to better outcomes for patients with ATTR-CM."

BridgeBio’s key programs:

Acoramidis (AG10) – Transthyretin (TTR) stabilizer for transthyretin amyloid cardiomyopathy (ATTR-CM):
In August 2023, the Company presented detailed positive results from its Phase 3 ATTRibute-CM study of acoramidis for patients with ATTR-CM; a highly statistically significant result was observed on the primary endpoint with a Win Ratio of 1.8 (p<0.0001). This primary endpoint result consistently favored acoramidis treatment across key subgroups, including National Amyloidosis Center (NAC) ATTR stage I, II, and III patients.
Absolute values observed across all-cause mortality (ACM), cardiovascular mortality (CVM) and CVH showed that over 30 months, patients survived more and were hospitalized less than has been seen in prior interventional studies of ATTR-CM to the Company’s knowledge, including real-world evidence presented at recent cardiology medical meetings.
The 81% survival rate on acoramidis approaches the survival rate in the age-matched U.S. database (~85%); the 0.29 mean annual CVH rate on acoramidis approaches the annual hospitalization rate observed in the broader U.S. Medicare population (~0.26).
Assessment of measures of disease progression in the trial suggest that on acoramidis, 45% of subjects experienced an improvement from baseline in N-terminal prohormone of brain natriuretic peptide (NT-proBNP) versus 9% on placebo, and 40% of subjects experienced an improvement from baseline on 6-minute walk distance (6MWD) versus 24% on placebo. To the Company’s knowledge, the proportions of treated patients improving on these measures over 30 months are higher than have been observed in prior controlled studies in ATTR-CM.
We believe these points of differentiation observed in the ATTRibute-CM results are made possible by acoramidis achieving near-complete stabilization of transthyretin (TTR) in both wild-type and variant ATTR patients; serum TTR was promptly and consistently elevated throughout the study.
In an exploratory post-hoc analysis of the relationship between on-treatment serum TTR levels and on-treatment measures of CVH, NT-proBNP, and Kansas City Cardiomyopathy Questionnaire (KCCQ), there was an association between the mean on-treatment TTR level and each of these three variables, consistent with the premise that higher degrees of stabilization lead to better outcomes for patients.
Acoramidis was well-tolerated with no safety signals of potential clinical concern identified.
The Company intends to file an NDA for acoramidis with the FDA by the end of 2023 and marketing authorization applications with additional regulatory authorities globally in 2024.
Additional detailed results of ATTRibute-CM are planned for presentation at the American Heart Association Scientific Sessions and the American College of Cardiology Scientific Sessions.
Low-dose infigratinib – FGFR1-3 inhibitor for achondroplasia and hypochondroplasia:
In September 2023, the Company completed positive regulatory meetings with the FDA and the EMA. Alignment from the FDA and EMA was reached on the adequacy of a one-year, 2:1 randomized, placebo-controlled Phase 3 pivotal trial for infigratinib to support a marketing application for the treatment of children with achondroplasia.
Based on the positive results to date, the Company has been enrolling children in the run-in for PROPEL3, the Phase 3 registrational study, and expects to initiate PROPEL3 by the end of 2023.
If approved, the Company believes that infigratinib has the potential to capture a significant share of the market based on blinded market research.
The Company is committed to exploring the potential of infigratinib on the wider medical and functional impacts of achondroplasia, hypochondroplasia and other skeletal dysplasias, which hold significant unmet needs for families.
BBP-418 – Glycosylation substrate for limb-girdle muscular dystrophy type 2I/R9 (LGMD2I/R9):
In October 2023, the Company shared new long-term data from its Phase 2 trial in patients with LGMD2I/R9 at the Annual Congress of World Muscle Society. The new long-term data remains consistent with earlier data from the Phase 2 study showing a well-tolerated safety profile and encouraging preliminary efficacy. Additionally, early changes in glycosylated αDG levels at 3 months predicted ambulatory improvements at 9 months, providing support for the possible use of glycosylated αDG levels as a surrogate endpoint in the ongoing Phase 3 study for Accelerated Approval by the FDA.
FORTIFY, the global Phase 3 registrational trial of BBP-418, continues to enroll in the U.S. with clinical trial sites planned for Europe and Australia. The Company believes there is potential to pursue Accelerated Approval for BBP-418 based on recent interactions with the FDA on the use of glycosylated αDG levels as a surrogate endpoint.
The Company believes BBP-418 has the potential to address a population of 7,000 patients in the U.S. and Europe.
There are currently no disease-modifying treatments available for LGMD2I/R9.
Encaleret – Calcium-sensing receptor (CaSR) inhibitor for autosomal dominant hypocalcemia type 1 (ADH1):
In September 2023, the Company announced proof-of-concept Phase 2b data evaluating the effects of encaleret on mineral homeostasis in patients with ADH1 were published in the New England Journal of Medicine in partnership with the NIH. The results highlighted that encaleret restored physiologic mineral homeostasis in 13 participants with ADH1, specifically correcting hypocalcemia and reducing hypercalciuria.
Population genetics analyses estimate approximately 25,000 carriers of gain-of-function variants of the CaSR, the underlying cause of ADH1, in the U.S. and European Union.
The Company has received approval to begin enrollment for CALIBRATE, its Phase 3 clinical trial of encaleret, in European Union and Japan, and anticipates sharing topline data from CALIBRATE in 2024.
If approved, encaleret could be the first therapy specifically indicated for the treatment of ADH1.
BBP-631 – AAV5 gene therapy candidate for congenital adrenal hyperplasia (CAH):
The Phase 1/2 gene therapy trial of BBP-631 for CAH continues to progress, with the dose-escalation portion of the study (N=6) fully enrolled; the Company plans to share data from the program in early 2024.
CAH is one of the most prevalent genetic diseases potentially addressable with adeno-associated virus (AAV) gene therapy, with more than 75,000 cases estimated in the U.S. and European Union.
RAS cancer portfolio:
BBO-8520, an investigational, next-generation small molecule direct KRASG12C(ON) inhibitor candidate that is designed to directly bind and inhibit KRASG12C in both its ON (GTP-bound) and OFF (GDP-bound) conformations, remains on track to file an IND in 2023.
The novel, direct KRAS (ON) targeting mechanism of BBO-8520 was observed to be potentially superior to KRAS (OFF) by data presented at the recent Triple Meeting, suggesting scope for a potent, next-generation agent to have an effect.
The Company’s PI3Kα:RAS breaker candidate BBO-10203 and pan-KRAS program remain on track for an IND and a development candidate selection, respectively, in 2024.
Recent Corporate Updates:

Multi-year partnership with Resilience to advance BBP-631, BBP-812 and future gene therapy treatments: The Company and Resilience signed an agreement to transfer the manufacturing process for the Company’s lead AAV-based gene therapy candidates, BBP-631 and BBP-812, to Resilience’s network of gene therapy manufacturing sites. Resilience will also be the primary manufacturer for future clinical projects across the Company’s gene therapy portfolio. The deal is intended to reduce manufacturing costs, which have historically accounted for approximately 50%-60% of the Company’s gene therapy budget.
$316 million gross proceeds raised between ATM and PIPE financing: The PIPE financing (as detailed in the forthcoming S-3 filing) included significant participation from four of the largest investment management firms in the U.S., as well as a number of large institutional investors and existing investors.
Third Quarter 2023 Financial Results:

Cash, Cash Equivalents, Marketable Securities and Short-Term Restricted Cash

Cash, cash equivalents and short-term restricted cash, totaled $521.9 million as of September 30, 2023, compared to cash, cash equivalents, marketable securities and short-term restricted cash of $466.2 million as of December 31, 2022. The net increase of $55.7 million in cash, cash equivalents, marketable securities and short-term restricted cash was primarily attributable to net proceeds received of $450.3 million from various equity financing offerings, and $5.2 million from stock option exercises, primarily offset by net cash used in operating activities of $402.9 million during the nine months ended September 30, 2023.

Revenue

Revenue for the three and nine months ended September 30, 2023 was $4.1 million and $7.6 million, respectively, as compared to $0.3 million and $75.8 million for the same periods in the prior year, respectively. The net decrease of $68.2 million for the nine months ended September 30, 2023, compared to the same period in the prior year, was primarily attributable to the timing of revenue recognized from the Navire-BMS License Agreement which was entered into in May 2022.

Operating Costs and Expenses

Operating costs and expenses for the three and nine months ended September 30, 2023 were $161.8 million and $437.5 million, respectively, compared to $129.5 million and $458.7 million, for the same periods in the prior year, respectively.

The overall increase of $32.3 million in operating costs and expenses for the three months ended September 30, 2023, compared to the same period in the prior year, was primarily due to an increase of $32.6 million in research and development and other expenses (R&D) to advance the Company’s pipeline of development programs, an increase of $4.6 million in selling, general and administrative (SG&A) expenses to support commercialization readiness efforts, offset by a decrease of $4.7 million in restructuring, impairment and related charges.

The overall decrease of $21.2 million in operating costs and expenses for the nine months ended September 30, 2023, compared to the same period in the prior year, was primarily due to a decrease of $28.9 million in restructuring, impairment and related charges given that the majority of the restructuring initiatives occurred in the prior year, a decrease of $8.3 million in SG&A expenses as a result of restructuring initiatives, offset by an increase of $16.0 million in R&D expenses to advance the Company’s pipeline of development programs.

Restructuring, impairment and related charges for the three and nine months ended September 30, 2023, amounted to $0.3 million and $7.2 million, respectively. These charges primarily consisted of winding down, exit costs, and severance and employee-related costs. Restructuring, impairment and related charges for the same periods in the prior year were $5.0 million and $36.1 million, respectively. These charges primarily consisted of impairments and write-offs of long-lived assets, severance and employee-related costs, and exit and other related costs. The Company expects that the remaining restructuring, impairment and related charges will be immaterial through the end of 2023.

Stock-based compensation expenses included in operating costs and expenses for the three months ended September 30, 2023 were $27.2 million, of which $14.1 million is included in R&D expenses, and $13.1 million is included in SG&A expenses. Stock-based compensation expenses included in operating costs and expenses for the three months ended September 30, 2022 were $18.7 million, of which $6.2 million is included in R&D expenses, and $12.5 million is included in SG&A expenses.

Stock-based compensation expenses included in operating costs and expenses for the nine months ended September 30, 2023 were $77.9 million, of which $39.2 million is included in R&D expenses, and $38.7 million is included in SG&A expenses. Stock-based compensation expenses included in operating costs and expenses for the nine months ended September 30, 2022 were $71.2 million, of which $29.0 million is included in R&D expenses, $41.0 million is included in SG&A expenses, and $1.2 million is included in restructuring, impairment and related charges.

"We were pleased to partner with leading institutional investors on our PIPE financing last quarter," said Brian Stephenson, Ph.D., CFA, Chief Financial Officer of BridgeBio. "We continue to take advantage of our optionality in exploring less-dilutive forms of financing and anticipate that these, in conjunction with the PIPE financing, could capitalize us to profitability."

bluebird bio to Present New and Updated Data from Gene Therapy Programs in Sickle Cell Disease and Beta-Thalassemia at the 65th American Society of Hematology (ASH) Annual Meeting and Exposition

On November 2, 2023 bluebird bio, Inc. (Nasdaq: BLUE) reported that new long-term efficacy, safety and health-related quality of life (HRQoL) follow-up data from its lentiviral vector (LVV) gene therapy programs in patients with sickle cell disease who have a history of vaso-occlusive events and patients with beta-thalassemia who require regular red blood cell transfusions will be presented at the 65th American Society of Hematology (ASH) (Free ASH Whitepaper) Annual Meeting and Exposition (Press release, bluebird bio, NOV 2, 2023, View Source [SID1234636739]). The meeting will take place December 9-12, 2023 at the San Diego Convention Center and online.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The bluebird bio data to be presented at ASH (Free ASH Whitepaper) 2023 underscore the maturity of LVV gene therapies for hemoglobinopathies, with up to 9 years of follow-up data in transfusion-dependent beta-thalassemia and 5 years of follow-up in sickle cell disease," said Richard Colvin, M.D., Ph.D., chief medical officer, bluebird bio. "The robustness of this dataset is unparalleled, giving us continued confidence that the transformational impact these therapies may have for patients is sustained over time. We especially look forward to the first ever presentation of data from our long-term follow-up study of lovo-cel, the most deeply studied gene therapy in development for sickle cell disease."

bluebird bio will present updated follow-up data for lovotibeglogene autotemcel (lovo-cel) in patients from the HBG-206 Group C and HGB-210 studies with sickle cell disease followed for up to 60 months (median of 35.5 months), demonstrating sustained hemoglobin AT87Q production and near-complete resolution of vaso-occlusive events (VOEs) and severe VOEs, as well as sustained improvements in HRQoL. lovo-cel treatment regimen largely reflects known side effects of hematopoietic stem cell collection and busulfan conditioning regimen and underlying sickle cell disease.

Updated analyses of efficacy, safety, and HRQoL data from Phase 1/2 and Phase 3 studies of betibeglogene autotemcel (beti-cel) in patients with transfusion-dependent beta-thalassemia will also be presented, demonstrating sustained transfusion independence with up to nine years of follow-up and improvements in quality of life reported at Month 36. Updated iron management outcomes demonstrating sustained improvements in iron burden, with the majority of patients able to stop iron chelation therapy, will also be presented. Safety of beti-cel treatment largely reflects the known side effects of hematopoietic stem cell collection and busulfan conditioning regimen.

Sickle Cell Disease Data
Oral Presentation [#1051]: Efficacy, Safety, and Health-Related Quality of Life (HRQOL) in Patients with Sickle Cell Disease (SCD) Who Have Received lovotibeglogene autotemcel (lovo-cel) Gene Therapy: Up to 60 Months of Follow-up
Presenting Author: Julie Kanter, M.D., director of the UAB Adult Sickle Cell clinic, associate professor in the Division of Hematology and Oncology, and co-director of the UAB Comprehensive Sickle Cell Disease Center at the University of Alabama in Birmingham
Date/Time: Monday, December 11, 2023, 4:30 p.m. PT

Beta-Thalassemia Data
Poster Presentation [#1102]: Sustained, Efficacy, Safety, and Improved Quality of Life in Adult and Pediatric Patients with Transfusion-Dependent β-Thalassemia up to 9 Years Post Treatment with betibeglogene autotemcel (beti-cel)
Presenting Author: Alexis A. Thompson, M.D., M.P.H., professor of pediatrics (hematology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, and chief, Division of Hematology, Children’s Hospital of Philadelphia
Date/Time: Saturday, December 9, 2023, 5:30 p.m. PT

Poster Presentation [#2480]: Improvement in Iron Burden in Patients with Transfusion-Dependent β-Thalassemia (TDT) Treated with betibeglogene autotemcel (beti-cel) Gene Therapy: Up to 9 Years of Follow-up
Presenting Author: Janet L. Kwiatkowski, M.D., MSCE, professor of pediatrics (hematology), Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, and director, Thalassemia Center, Children’s Hospital of Philadelphia
Date/Time: Sunday, December 10, 2023, 6:00 p.m. PT

Abstracts outlining bluebird bio’s accepted data at ASH (Free ASH Whitepaper) 2023 are available on the ASH (Free ASH Whitepaper) conference website.

The U.S. Food and Drug Administration previously accepted the lovo-cel Biologics Licensing Application (BLA) for Priority Review and set a Prescription Drug User Fee Act (PDUFA) goal date of December 20, 2023. beti-cel was approved by the FDA in August 2022 and is commercially available in the United States as ZYNTEGLO.

About sickle cell disease (SCD)
Sickle cell disease (SCD) is a complex and progressive genetic disease associated with debilitating and unpredictable pain crises, anemia, irreversible damage to vital organs, and early death. In SCD, high concentrations of sickle hemoglobin (HbS) in red blood cells (RBCs) cause RBCs to become sickled, sticky, and rigid with a shorter life span, which manifests acutely as hemolytic anemia, vasculopathy, and vaso-occlusion. Pain onset can be sudden and unpredictable, often requiring hospitalization. Fifty to sixty percent of adults with SCD have end organ damage, with 24 percent experiencing damage in multiple organs, and one in four patients have a stroke by the age of 45. The impact of SCD is pervasive and affects every aspect of life for patients and their families and caregivers – from missed work and school, decreased quality of life and mental health, and ability to complete daily tasks. In the U.S., there are approximately 100,000 people living with SCD, and the median age of death is 45 years of age.

While SCD was the first disease to have a genetic cause identified, treatment advances have lagged – since that discovery in 1949,i only four therapies have been approved,ii none of which address the underlying genetic cause of disease.

About lovotibeglogene autotemcel (lovo-cel)
lovotibeglogene autotemcel (lovo-cel) gene therapy is an investigational one-time treatment being studied for sickle cell disease (SCD), that is designed to add functional copies of a modified form of the β-globin gene (βA-T87Q-globin gene) into a patient’s own hematopoietic (blood) stem cells (HSCs). Once patients have the βA-T87Q-globin gene, their red blood cells (RBCs) can produce anti-sickling hemoglobin (HbAT87Q) that decreases the proportion of HbS, with the goal of reducing sickled RBCs, hemolysis, and other complications. bluebird bio’s clinical development program for lovo-cel includes the completed Phase 1/2 HGB-205 and ongoing Phase 1/2 HGB-206 and Phase 3 HGB-210 studies. bluebird bio is also conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have been treated with lovo-cel in bluebird bio-sponsored clinical studies.

In the BLA submission, as of August 2022, the majority of adverse events in treated patients were attributed to underlying sickle cell disease or conditioning with busulfan. Nonserious adverse events related to lovo-cel included infusion reactions (hot flush and decreased blood pressure) in two patients (2% each). Serious adverse events related to lovo-cel included anemia in two patients (4%) with concurrent alpha-thalassemia trait. Three cases of hematologic malignancy have been reported, including one case of myelodysplastic syndrome that remains under investigation. No cases have been associated with insertional oncogenesis. Three of 50 patients (6%) died, one due to sudden cardiac death and two due to aforementioned hematologic malignancy.

The U.S. Food and Drug Administration accepted the lovo-cel Biologics Licensing Application (BLA) for Priority Review and set a Prescription Drug User Fee Act (PDUFA) goal date of December 20, 2023. The FDA previously granted lovo-cel orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation, and rare pediatric disease designation.

About ZYNTEGLO (betibeglogene autotemcel) or beti-cel
ZYNTEGLO is a first-in-class, one-time ex-vivo LVV gene therapy approved for the treatment of beta-thalassemia in adult and pediatric patients who require regular red blood cell transfusions. ZYNTEGLO works by adding functional copies of a modified form of the beta-globin gene (βA-T87Q-globin gene) into a patient’s own hematopoietic (blood) stem cells to enable the production of a modified functional adult hemoglobin (HbAT87Q). Once a patient has the βA-T87Q-globin gene, they have the potential to increase ZYNTEGLO-derived adult hemoglobin (HbAT87Q) and total hemoglobin to normal or near normal levels that can eliminate the need for regular red blood cell (RBC) transfusions.

Indication
ZYNTEGLO is indicated for the treatment of adult and pediatric patients with beta-thalassemia who require regular red blood cell (RBC) transfusions.

Important Safety Information

Delayed Platelet Engraftment

Delayed platelet engraftment has been observed with ZYNTEGLO treatment. Bleeding risk is increased prior to platelet engraftment and may continue after engraftment in patients with prolonged thrombocytopenia; 15% of patients had ≥ Grade 3 decreased platelets on or after Day 100.

Patients should be made aware of the risk of bleeding until platelet recovery has been achieved. Monitor patients for thrombocytopenia and bleeding according to standard guidelines. Conduct frequent platelet counts until platelet engraftment and platelet recovery are achieved. Perform blood cell count determination and other appropriate testing whenever clinical symptoms suggestive of bleeding arise.

Risk of Neutrophil Engraftment Failure

There is a potential risk of neutrophil engraftment failure after treatment with ZYNTEGLO. Neutrophil engraftment failure is defined as failure to achieve three consecutive absolute neutrophil counts (ANC) ≥ 500 cells/microliter obtained on different days by Day 43 after infusion of ZYNTEGLO. Monitor neutrophil counts until engraftment has been achieved. If neutrophil engraftment failure occurs in a patient treated with ZYNTEGLO, provide rescue treatment with the back-up collection of CD34+ cells.

Risk of Insertional Oncogenesis

There is a potential risk of LVV mediated insertional oncogenesis after treatment with ZYNTEGLO.

Patients treated with ZYNTEGLO may develop hematologic malignancies and should be monitored lifelong. Monitor for hematologic malignancies with a complete blood count (with differential) at Month 6 and Month 12 and then at least annually for at least 15 years after treatment with ZYNTEGLO, and integration site analysis at Months 6, 12, and as warranted.

In the event that a malignancy occurs, contact bluebird bio at 1 833-999-6378 for reporting and to obtain instructions on collection of samples for testing.

Hypersensitivity Reactions

Allergic reactions may occur with the infusion of ZYNTEGLO. The dimethyl sulfoxide (DMSO) in ZYNTEGLO may cause hypersensitivity reactions, including anaphylaxis.

Anti-retroviral and Hydroxyurea Use

Patients should not take prophylactic HIV anti-retroviral medications or hydroxyurea for at least one month prior to mobilization, or for the expected duration for elimination of the medications, and until all cycles of apheresis are completed. If a patient requires anti-retrovirals for HIV prophylaxis, then confirm a negative test for HIV before beginning mobilization and apheresis of CD34+ cells.

Interference with Serology Testing

Patients who have received ZYNTEGLO are likely to test positive by polymerase chain reaction (PCR) assays for HIV due to integrated BB305 LVV proviral DNA, resulting in a false-positive test for HIV. Therefore, patients who have received ZYNTEGLO should not be screened for HIV infection using a PCR‑based assay.

Adverse Reactions

The most common non-laboratory adverse reactions (≥20%) were mucositis, febrile neutropenia, vomiting, pyrexia, alopecia, epistaxis, abdominal pain, musculoskeletal pain, cough, headache, diarrhea, rash, constipation, nausea, decreased appetite, pigmentation disorder, and pruritus. The most common Grade 3 or 4 laboratory abnormalities (>50%) include neutropenia, thrombocytopenia, leukopenia, anemia, and lymphopenia.

Drug Interactions

Drug-drug interactions between iron chelators and the myeloablative conditioning agent must be considered. Iron chelators should be discontinued at least 7 days prior to initiation of conditioning. The prescribing information for the iron chelator(s) and the myeloablative conditioning agent should be consulted for the recommendations regarding co-administration with CYP3A substrates.

Some iron chelators are myelosuppressive. After ZYNTEGLO infusion, avoid use of these iron chelators for 6 months. If iron chelation is needed, consider administration of non-myelosuppressive iron chelators. Phlebotomy can be used in lieu of iron chelation, when appropriate.

Pregnancy/Lactation

Advise patients of the risks associated with conditioning agents, including on pregnancy and fertility. ZYNTEGLO should not be administered to women who are pregnant, and pregnancy after ZYNTEGLO infusion should be discussed with the treating physician.

ZYNTEGLO is not recommended for women who are breastfeeding, and breastfeeding after ZYNTEGLO infusion should be discussed with the treating physician.

Females and Males of Reproductive Potential

A negative serum pregnancy test must be confirmed prior to the start of mobilization and re-confirmed prior to conditioning procedures and before ZYNTEGLO administration.

Women of childbearing potential and men capable of fathering a child should use an effective method of contraception (intra uterine device or combination of hormonal and barrier contraception) from start of mobilization through at least 6 months after administration of ZYNTEGLO.

Advise patients of the option to cryopreserve semen or ova before treatment if appropriate.
Please see full Prescribing Information for ZYNTEGLO.

Biomea Fusion Announces Two Poster Presentations at Upcoming ASH Annual Meeting 2023

On November 2, 2023 Biomea Fusion, Inc. ("Biomea" or "the company") (Nasdaq: BMEA), a clinical-stage biopharmaceutical company dedicated to discovering and developing novel covalent small molecules to treat and improve the lives of patients with genetically defined cancers and metabolic diseases, reported that abstracts related to BMF-219, a novel, investigational covalent menin inhibitor, currently in Phase 1 clinical study across multiple liquid and KRAS-mutated solid tumors, and BMF-500, a novel, investigational covalent FMS-like tyrosine kinase 3 (FLT3) inhibitor currently in Phase 1 clinical study in FLT3-mutated acute leukemias, have been accepted for presentation at the upcoming American Society of Hematology (ASH) (Free ASH Whitepaper) Annual Meeting, to be held in San Diego from December 9-12, 2023 (Press release, Biomea Fusion, NOV 2, 2023, View Source [SID1234636738]). Both BMF-219 and BMF-500 were originated in-house with Biomea’s proprietary FUSION system platform, which discovers and designs next-generation covalent-binding small molecule product candidates.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We look forward to our first presentation of clinical data of BMF-219 from our ongoing, extensive study of this novel covalent menin inhibitor across a broad spectrum of mutation-specific liquid and solid tumors in patients with significant unmet needs," said Steve Morris, M.D., Chief Development Officer at Biomea. "The upcoming presentation at ASH (Free ASH Whitepaper) follows our initial reporting earlier this year of topline data from our ongoing COVALENT-101 trial, which demonstrated two complete responses out of five relapsed/refractory acute myeloid leukemia patients with menin-dependent mutations."

Details for the abstracts are listed below and can be viewed online at the ASH (Free ASH Whitepaper) conference website.

Publication Number: 2916
Title: Covalent Menin Inhibitor BMF-219 in Patients with Relapsed or Refractory (R/R) Acute Leukemia (AL): Preliminary Phase 1 Data from the COVALENT-101 Study
Session Name: 616. Acute Myeloid Leukemias: Investigational Therapies, Excluding Transplantation and Cellular Immunotherapies: Poster II
Session Date: Sunday, December 10, 2023
Presentation Time: 6:00 PM – 8:00 PM
Location: San Diego Convention Center, Halls G-H

Full Text of Abstract

Background: Menin, a protein involved in transcriptional regulation, plays a role in the genesis of multiple cancers. Preclinical data from BMF-219, an investigational, highly selective, oral small-molecule inhibitor of menin, show sustained potent abrogation of menin-dependent oncogenic signaling.

BMF-219 is the first and only covalent menin inhibitor in clinical development and is being evaluated in multiple hematologic malignancies, solid tumors, and diabetes mellitus. COVALENT-101 (NCT05153330) is a Phase I dose-escalation and -expansion study of BMF-219 in R/R AL (Cohort 1), DLBCL (Cohort 2), MM (Cohort 3), and CLL (Cohort 4). Here we report preliminary safety, PK and anticancer activity data from Cohort 1 (AL).

Methods: Doses of BMF-219 are escalated independently for each indication, initially in single-subject cohorts followed by a "3 + 3" design.

Eligible patients (pts) include adults with R/R AL ineligible for standard therapy. Initially pts were enrolled agnostic to molecular status. A subsequent amendment introduced quotas for KMT2Ar (MLL1r), NPM1 and other known menin-dependent mutations: CEBP/A, MLL1-PTD, MN1, NUP98, NUP214, PICALM-AF10, SETBP1. Prior exposure to reversible menin inhibitor therapy is permitted.

Subjects receive BMF-219 daily for continuous 28-day cycles until progression/intolerability. There are 2 parallel dose-escalation arms: pts not taking (Arm A) or taking (Arm B) moderate or strong CYP3A4 inhibitors. The study is ongoing and accruing in the escalation. Expansion cohorts will enroll pts to obtain further safety and efficacy data at the OBD/RP2D.

Results: As of data cutoff of 7/24/2023, 26 pts with R/R AL (24 AML; 2 ALL) are enrolled; 7 remain on study treatment. Baseline characteristics include 17(65%) males and 9(35%) females with a median age of 57.5 years (range 33-84). There is a median of 4 (range 1-8) prior lines of therapy and 11 (42%) with prior HSCT(s). Six pts (23%) had KMT2Ar, 3 (12%) KMT2A-PTD, 4 (15%) NPM1, and 13 (50%) WT for KMT2A and NPM1.

Dosing began with single-patient cohorts at 100 mg QD (Arm A) and 25 mg QD (Arm B) and has been escalated through 4 dose levels. Thus far, pts have been dosed up to 500 mg QD (Arm A) and 125 mg QD (Arm B).

BMF-219 exposures were comparable between arms, with ~2-4-fold higher exposures observed with co-administration of a moderate or strong CYP3A4 inhibitor. At the highest dose (DL4) in which PK was evaluated, Arm A (500 mg QD) and Arm B (125 mg QD), pts on average achieved ~50% of target exposure (2000 ng*hr/mL) with some pts surpassing it. Higher QD dosing or corresponding BID dosing is expected to achieve desired exposure.

BMF-219 has generally been well tolerated with no DLTs observed and no discontinuations due to treatment-related toxicities. No related QTc prolongation was observed. At the time of data cutoff, 23 of 26 pts were included in the safety population. Common TRAEs (≥10%) include vomiting 13% (3) and Differentiation Syndrome (DS) 13% (3). No Grade 5 TRAEs were reported. The only common Grade ≥3 TRAE (≥5%) was DS 13% (3).

The efficacy evaluable population includes AML pts who meet the following criteria: dosed at or near predicted efficacious dose (500 mg or above [Arm A]; 125 mg or above [Arm B]), had known menin-dependent mutations, and completed at least one scheduled response assessment (or had a minimum of 7 doses if discontinued prematurely). Thus far, 2 of 5 efficacy evaluable patients achieved a complete remission (1 CR; 1 CRi) and both continue BMF-219 treatment.

Patient A: 39/M, NUP98-NSD1, ECOG=0, 500 mg QD, Arm A, 4 prior lines of treatment including intensive chemotherapy and allo-HSCT. At C1D27, marrow blasts were reduced to 6% from 13% at study entry. The patient achieved CR at C2D28 with 0% blasts.
Patient B: 70/F, NPM1m, ECOG=1, 125 mg QD, Arm B, 1 prior line of treatment with decitabine and an investigational agent. At C1D28, marrow blasts were reduced to 34% from 52% at study entry. The patient achieved CRi with 3% blasts at C2D28.
Conclusion: BMF-219 is generally well tolerated with no DLT observed (and able to be taken with and without CYP3A4 inhibitors) with no pts discontinuing therapy due to toxicity. BMF-219 dose escalation is ongoing and approaching target exposure. BMF-219 demonstrates early signs of clinical activity in different genomic subgroups. The trial is ongoing and includes enrollment for pts diagnosed with AL, DLBCL, MM and CLL.

Publication Number: 1546
Title: COVALENT-103: A Phase 1, Open-Label, Dose-Escalation, and Dose-Expansion Study of BMF-500, an Oral Covalent FLT3 Inhibitor, in Adults with Acute Leukemia (AL)
Session Name: 616. Acute Myeloid Leukemias: Investigational Therapies, Excluding Transplantation and Cellular Immunotherapies: Poster I
Session Date: Saturday, December 9, 2023
Presentation Time: 5:30 PM – 7:30 PM
Location: San Diego Convention Center, Halls G-H

Full Text of Abstract

Background: FLT3 mutations occur in 25-35% of patients with AML and are associated with poor prognosis. FLT3 mutations are most frequently the result of an internal tandem duplication (ITD) of amino acids in the juxtamembrane region of FLT3 or point mutations in the tyrosine kinase domain (TKD). FLT3-ITD mutations are associated with increased incidence of relapse, shorter duration of remission, and decreased disease-free and overall survival.

BMF-500 is a novel orally bioavailable, highly potent and selective covalent inhibitor of FLT3 including wildtype (WT), ITD, TKD, as well as a variety of additional resistance-conferring mutations such as the gatekeeper F691. BMF-500 has demonstrated high affinity for FLT3, lack of cKIT inhibition, and sustained cell-killing capacity despite drug washout (Law et al., ASH (Free ASH Whitepaper) 2022 Abstract 2756). BMF-500 has shown sustained tumor regression and improved survival in both subcutaneous and disseminated xenograft models of mutant FLT3-driven AML.

Study Design: COVALENT-103 (NCT05918692) is an open-label, non-randomized, multicenter, first-in-human Phase I study evaluating the safety, tolerability, and clinical activity of escalating doses of twice daily oral BMF-500 in patients with relapsed or refractory (R/R) AL, including AML, ALL, or MPAL, with or without FLT3 mutations.

The trial has 2 arms that will undergo dose escalation in parallel: Arm A (without) and Arm B (with) concomitant use of a moderate or strong CYP3A4 inhibitor. Utilizing an accelerated titration design (ATD), doses of BMF-500 will be escalated in single-subject cohorts until 1 subject experience either a Grade 2 or higher related-adverse event or dose-limiting toxicity (DLT). At that point, the cohort will switch to a classical "3 +3" design. Patients with WT FLT3 AL may be enrolled, up to a limit of 33% per arm. Treatment will continue in 28-day cycles until progression or intolerability. Expansion cohorts will enroll additional patients to obtain further safety and efficacy data.

Patients must be refractory, relapsed or must have progressed on or following discontinuation of the most recent anti-cancer therapy or be ineligible for any approved standard of care therapies, including HSCT. Participants with FLT3-mutant AML must have received treatment with a FLT3 inhibitor approved for treatment of relapsed or refractory FLT3-mutant AML.

Key inclusion criteria include ECOG PS ≤ 2, adequate organ function, and documented FLT3 mutation status. Key exclusion criteria include known CNS disease involvement, clinically significant cardiovascular disease, and WBC count >50,000/µL (uncontrollable with cytoreductive therapy).

Objectives: The primary objective of the study is to evaluate safety and tolerability and to determine the optimal biological dose (OBD)/ recommended Phase 2 dose (RP2D) of BMF-500 oral monotherapy based on evaluation of available PK/ PD, safety and efficacy data. Secondary objectives include characterization of the pharmacodynamics and pharmacokinetics of BMF-500, and assessment of its antitumor activity per modified Cheson (2003) criteria or the NCCN Clinical Practice Guidelines (ALL Version 1.2022) as determined by the investigator. Endpoints include best overall response rate (ORR), complete remission (CRc), duration of response (DOR), relapse-free survival (RFS) and overall survival (OS).

The study was initiated in July 2023 and will enroll ~110 participants at approximately 30 sites.

About COVALENT-101

COVALENT-101 is a Phase I, open-label, multi-center, dose-escalation and dose-expansion study designed to assess the safety, tolerability, and pharmacokinetics/pharmacodynamics of oral dosing of BMF-219 in patients with relapsed/refractory (R/R) acute leukemias —including subpopulations where menin inhibition is expected to provide therapeutic benefit (e.g., patients with MLL1/KMT2A gene rearrangements or NPM1 mutations). The study is designed to enroll subsets of acute leukemia patients who are receiving a CYP3A4 inhibitor and also those not receiving a CYP3A4 inhibitor. COVALENT-101 is also investigating the dosing of BMF-219 in other patient populations where preclinical studies have shown high menin dependence, such as multiple myeloma, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia. Additional information about this Phase I clinical trial of BMF-219 can be found at ClinicalTrials.gov using the identifier NCT05153330.

About COVALENT-103

COVALENT-103 is a multicenter, open-label, non-randomized trial seeking to evaluate the safety and efficacy of BMF-500, a twice daily oral treatment, in adult patients with relapsed or refractory acute leukemia with FMS-like tyrosine kinase 3 (FLT3) wild-type and FLT3 mutations. Additional information about the Phase I clinical trial of BMF-500 can be found at ClinicalTrials.gov using the identifier NCT05918692.