Geron Announces U.S. Expanded Access Protocol for Imetelstat in Lower Risk MDS

On June 29, 2023 Geron Corporation (Nasdaq: GERN), a late-stage clinical biopharmaceutical company, reported that an Expanded Access Protocol (EAP) is available for imetelstat, the Company’s first-in-class telomerase inhibitor (Press release, Geron, JUN 29, 2023, http://ir.geron.com/investors/press-releases/press-release-details/2023/Geron-Announces-U.S.-Expanded-Access-Protocol-for-Imetelstat-in-Lower-Risk-MDS/default.aspx [SID1234632973]). As allowed under the U.S. Food and Drug Administration (FDA) policies, companies may offer an EAP, which permits an investigational medicinal product intended to treat a serious or life-threatening condition, such as lower risk myelodysplastic syndromes (MDS), to be used outside of a clinical trial.1

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We have heard physicians in both academic and community settings express the need for new treatment options for their lower risk MDS patients, and they will now have an option to access imetelstat through the EAP," said Faye Feller, M.D., Executive Vice President, Chief Medical Officer of Geron. "With positive IMerge Phase 3 results submitted to the FDA, we now plan to be working with clinicians, patients and the MDS patient advocacy community to provide access to imetelstat for eligible patients through our EAP that was accepted by the FDA."

The imetelstat EAP is available for patients with transfusion dependent non-del(5q) lower risk MDS who are refractory to, relapsed after, or ineligible for erythropoiesis-stimulating agents (ESAs), and naïve to lenalidomide and hypomethylating agents (HMAs). Transfusion dependent is defined as requiring at least four units of packed red blood cells (RBCs) over any eight-week period during the 16 weeks prior to being considered for the EAP.

The Company recently announced the submission to the FDA of a New Drug Application (NDA) for imetelstat, which is based on results from the IMerge Phase 3 clinical trial. In that trial, the primary endpoint of 8-week transfusion independence (TI) was significantly higher with imetelstat vs. placebo (P<0.001), with median TI duration approaching one year for imetelstat 8-week TI responders. Mean hemoglobin levels in imetelstat-treated patients increased significantly (P<0.001) over time compared to placebo patients. Further, statistically significant and clinically meaningful efficacy results were achieved across key MDS subgroups: ring sideroblast (RS) status, baseline transfusion burden and IPSS risk category. Safety results were consistent with prior imetelstat clinical experience.

About the Imetelstat EAP

The imetelstat EAP is a U.S.-only protocol for eligible adult participants diagnosed with lower risk (very low, low, or intermediate risk by IPSS-R) myelodysplastic syndromes (MDS) who are red blood cell (RBC) transfusion dependent, have failed to respond or have lost response or are ineligible for erythropoiesis-stimulating agents (ESAs), had not received prior treatment with either a hypomethylating agent or lenalidomide and are non-del(5q). Additional information is planned to be available on www.clinicaltrials.gov.

U.S.-based healthcare professionals seeking more information about the imetelstat EAP can email [email protected].

Lower risk MDS patients who are interested in enrolling in the imetelstat EAP should speak with their physician to understand if imetelstat is an appropriate treatment option.

More information is available on Geron’s website under the Patients tab.

Imetelstat is an investigational therapy and is not approved for any indication in any markets.

About IMerge Phase 3

The Phase 3 portion of the IMerge Phase 2/3 study is a double-blind, 2:1 randomized, placebo-controlled clinical trial to evaluate imetelstat in patients with IPSS Low or Intermediate-1 risk (lower risk) transfusion dependent MDS who were relapsed after, refractory to, or ineligible for, erythropoiesis stimulating agent (ESA) treatment, had not received prior treatment with either a HMA or lenalidomide and were non-del(5q). To be eligible for IMerge Phase 3, patients were required to be transfusion dependent, defined as requiring at least four units of packed red blood cells (RBCs), over an eight-week period during the 16 weeks prior to entry into the trial. The primary efficacy endpoint of IMerge Phase 3 is the rate of red blood cell transfusion independence (RBC-TI) lasting at least eight weeks, defined as the proportion of patients without any RBC transfusion for at least eight consecutive weeks since entry to the trial (8-week TI). Key secondary endpoints include the rate of RBC-TI lasting at least 24 weeks (24-week TI), the duration of TI and the rate of hematologic improvement erythroid (HI-E), which is defined under 2006 IWG criteria as a rise in hemoglobin of at least 1.5 g/dL above the pretreatment level for at least eight weeks or a reduction of at least four units of RBC transfusions over eight weeks compared with the prior RBC transfusion burden. A total of 178 patients were enrolled in IMerge Phase 3 across North America, Europe, Middle East and Asia.

About Imetelstat

Imetelstat is a novel, first-in-class telomerase inhibitor exclusively owned by Geron and being developed in hematologic malignancies. Data from non-clinical studies and clinical trials of imetelstat provide strong evidence that imetelstat targets telomerase to inhibit the uncontrolled proliferation of malignant stem and progenitor cells in myeloid hematologic malignancies resulting in malignant cell apoptosis and potential disease-modifying activity. Imetelstat has been granted Fast Track designation by the U.S. Food and Drug Administration for both the treatment of adult patients with transfusion dependent anemia due to Low or Intermediate-1 risk MDS that is not associated with del(5q) who are refractory or resistant to an erythropoiesis stimulating agent, and for adult patients with Intermediate-2 or High-risk MF whose disease has relapsed after or is refractory to janus associated kinase (JAK) inhibitor treatment. Geron submitted a New Drug Application (NDA) in the U.S. in June 2023 and expects to submit a Marketing Authorization Application (MAA) in the EU in the second half of 2023 in the lower risk MDS indication. Imetelstat is currently not approved by any regulatory authority.

Bexion Pharmaceuticals, Inc. to Present at the ESMO World Congress on Gastrointestinal Cancer 2023

On June 29, 2023 Bexion Pharmaceuticals, Inc., a clinical-stage biopharmaceutical company developing a new generation of biologic therapy to treat solid tumor cancers and chemotherapy-induced peripheral neuropathy (CIPN), reported that the Company will be represented at the ESMO (Free ESMO Whitepaper) World Congress on Gastrointestinal Cancer 2023 taking place on June 28 – July 1, 2023, in Barcelona, Spain.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Presentation Details:

Title: BXQ-350: A Phase 1b/2 placebo-controlled, double-blind study on the efficacy and safety of BXQ-350 in combination with mFOLFOX7 and bevacizumab in newly diagnosed metastatic colorectal carcinoma
Abstract Number: P-73
Presenter: Dr. Reema Patel
Date: Friday, June 30, 2023

About BXQ-350
Bexion’s lead drug candidate is BXQ-350, a first-in-class biologic containing the multifunctional, sphingolipid activator protein, Saposin C, and a phospholipid. BXQ-350 has pre-clinical antitumor effects in vitro and in vivo, particularly in colorectal, brain and other solid tumors. Two Phase 1 clinical trials, one in adults and one in pediatric DIPG patients, demonstrated a strong safety profile for BXQ-350 with evidence of single agent activity across multiple solid tumors. Additionally, other clinical and non-clinical data suggest BXQ-350 has activity in chemotherapy-induced peripheral neuropathy.

Domain Therapeutics announces nomination of best-in-class CCR8 antibody candidate, DT-7012, further strengthening its unique portfolio of GPCR-targeting immunotherapies

On June 29, 2023 Domain Therapeutics ("Domain" or "the Company"), a clinical-stage biopharmaceutical company developing innovative drug candidates in immuno-oncology targeting G Protein-Coupled Receptors (GPCRs), reported the nomination of a novel drug candidate, DT-7012, an anti-CCR8 monoclonal antibody depleting tumor-infiltrating regulatory T cells (Tregs), with best-in-class potential and an initial positioning that will enable fast-track development and accelerated market access (Press release, Domain Therapeutics, JUN 29, 2023, View Source [SID1234632960]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

CCR8 is a GPCR target specifically expressed by Treg cells, one of the most important immunosuppressive immune cells responsible for the failure of several therapeutics in the clinic, including immune checkpoint inhibitors. Supported by pre-clinical data showing strong anti-tumor activity as a monotherapy, the CCR8 target is a highly strategic approach to derive efficient novel immunotherapies that aim to turn non-responder patients into responders.

Applying the Company’s precision research strategy and based on an in vitro benchmarking of competitor’s candidates, Domain has discovered a unique collection of anti-hCCR8 antibodies and nominated DT-7012 as a differentiated best-in-class Treg-depleting CCR8 antibody candidate. Unlike most competitors, DT-7012 is able to i) preserve CCR8-modulation capacity in presence of high concentrations of CCR8 in the tumor microenvironment and to ii) recognize different forms of CCR8 having different post-translational modifications. With cell line generation currently ongoing, the Company expects to start a Phase I study of DT-7012 by mid-2025.

Dr. Stephan Schann, VP Research at Domain Therapeutics, commented: "The nomination of our best-in-class Treg-depleting CCR8 monoclonal antibody candidate, DT-7012, following the recent nomination of our first-in-class PAR2 NAM candidate, DT-9045, further strengthens and continues to build Domain’s unique portfolio of GPCR-based immunotherapies. Our in vitro benchmark and comparative studies with competitor CCR8 antibodies, clearly demonstrated superiority of DT-7012 over other CCR8 clinical candidates, marking a key step in our efforts to increase the clinical success rate of treatments in non-responding patients with cancer."

The Company’s growing pipeline of GPCR-targeting immunotherapies is comprised of:

Anti-CCR8 antibody (DT-7012) – monoclonal antibody candidate
Phase I study to commence by mid-2025
PAR2 NAM antagonist (DT-9045) – small molecule candidate
Phase I study to commence by mid-2025
EP4 receptor antagonist (DT-9081) – small molecule candidate
Phase I ascending dose study dosing ongoing
A2a/A2b antagonist (M1069) – small molecule candidate in partnership with Merck KGaA
Phase I ascending dose study ongoing

Corvus Pharmaceuticals Presents New Ciforadenant Preclinical Data at the 2nd JCA-AACR Precision Cancer Medicine International Conference

On June 29, 2023 Corvus Pharmaceuticals, Inc. (Nasdaq: CRVS), a clinical-stage biopharmaceutical company, reported new preclinical data for ciforadenant, the Company’s adenosine 2A receptor inhibitor, highlighting its mechanism of action and synergy with immune checkpoint inhibitors via combination with anti-CTLA-4 and anti-PD-1 therapies (Press release, Corvus Pharmaceuticals, JUN 29, 2023, View Source [SID1234632959]). The data is being presented in a poster at the 2nd Japanese Cancer Association and American Association for Cancer Research (AACR) (Free AACR Whitepaper) (JCA-AACR) Precision Cancer Medicine International Conference, which is taking place June 28-30, 2023 in Kyoto, Japan.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Our presentation at the JCA-AACR conference further supports the rationale for the synergistic combination of ciforadenant with checkpoint inhibitors to leverage multiple components of the immune response to cancer," said Richard A. Miller, M.D., co-founder, president and chief executive officer of Corvus. "We are exploring this combination in a Phase 1b/2 clinical trial that is being led by the Kidney Cancer Research Consortium. The clinical trial is exploring the potential of ciforadenant as a first line therapy for metastatic renal cell cancer in combination with anti-CTLA-4 and anti-PD-1 therapies, and is based on preclinical research published in 2018 demonstrating synergy when ciforadenant was combined with anti-CTLA-4 and anti-PD-1 therapies1. Enrollment in the clinical trial is ongoing and we plan to share initial data before the end of 2023."

Ciforadenant Data Presented at JCA-AACR Conference
The new ciforadenant preclinical data was presented by Dan Li, Ph.D., Senior Scientist at Corvus, in a poster session (abstract #12-1) today at the JCA-AACR conference. The poster is available to JCA-AACR attendees in the poster session and is also available on the Publications and Presentations page of the Corvus website. The poster presentation highlights preclinical data supporting the synergy between ciforadenant and immune checkpoint blockade (ICB), leading to a proinflammatory response:

Depletion of myeloid cells abolished the synergy of ciforadenant and ICB in a murine melanoma model.
The combination of ciforadenant with ICB upregulated the genes involved in the IL-12/STAT4 signaling axis, which leads to the development of CXCR3+ IFNγ-producing Th1 helper cells.
Ciforadenant treatment increased production of chemokine CXCL10, a ligand for recruitment of CXCR3+ Th1 helper cells into the tumor.
Ciforadenant modulated antitumor responses by turning the tumor microenvironment into the proinflammatory state.
The combination of ciforadenant with ICB promoted the production of several proinflammatory cytokines such as IL-6, TNFa, and IFNg.

Bristol Myers Squibb Receives European Commission Approval for Opdivo (nivolumab) with Chemotherapy as Neoadjuvant Treatment of Resectable Non-Small Cell Lung Cancer at High Risk of Recurrence in Patients with Tumor Cell PD-L1 Expression ?1%

On June 29, 2023 Bristol Myers Squibb (NYSE: BMY) reported that the European Commission (EC) has approved Opdivo (nivolumab) in combination with platinum-based chemotherapy for the neoadjuvant treatment of resectable non-small cell lung cancer (NSCLC) at high risk of recurrence in adult patients with tumor cell PD-L1 expression ≥1% (Press release, Bristol-Myers Squibb, JUN 29, 2023, View Source [SID1234632956]). With this EC decision, Opdivo with chemotherapy becomes the first neoadjuvant immunotherapy-based treatment option approved for patients in the European Union (EU) in this setting.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The EC’s decision is based on results from the Phase 3 CheckMate -816 trial, in which three cycles of Opdivo with chemotherapy demonstrated a statistically significant and clinically meaningful improvement in event-free survival (EFS) and pathologic complete response (pCR) compared to chemotherapy alone when administered before surgery. The safety profile of Opdivo with chemotherapy was consistent with previously reported studies in NSCLC.

"While cure is possible for some patients with resectable non-small cell lung cancer via surgery, approximately 30-55% of the patients who have their tumors removed will eventually experience recurrence and ultimately die from their disease, thus creating a strong need for treatment options beyond surgery that can help prevent recurrence," said Nicolas Girard, M.D., professor of thoracic oncology, Institut Curie and Paris Saclay University, Paris, France. "The importance of the approval of nivolumab combined with chemotherapy for the treatment of certain patients with non-metastatic NSCLC in the EU cannot be overstated – it presents the opportunity to change the way their cancer is treated and offers a solution that may reduce the risk of their cancer returning after surgery."

The EC approval allows for the use of Opdivo in combination with platinum-based chemotherapy for the neoadjuvant treatment of adult patients with resectable NSCLC at high risk of recurrence and with tumor cell PD-L1 expression ≥1% in the 27 member states of the EU, as well as Iceland, Liechtenstein and Norway. Opdivo with chemotherapy has also been approved for the neoadjuvant treatment of patients with resectable NSCLC regardless of PD-L1 expression levels in 21 countries, including the United States, Japan and China, and additional regulatory applications are under review by global health authorities. Primary analyses of pCR, EFS and preliminary overall survival (OS) data from the CheckMate -816 trial were previously presented at medical congresses and published in the New England Journal of Medicine. Three-year data were presented at the European Lung Cancer Congress 2023 demonstrating durable clinical benefits with the combination.

"Although we have seen progress in the treatment of earlier-stage non-small cell lung cancer, a significant number of people still face poor outcomes. Up to 50% of NSCLC cases are resectable, meaning that the tumors can be surgically removed, but surgery alone is not always enough to stop the cancer from coming back," said Anne-Marie Baird, a patient advocate and president, Lung Cancer Europe. "We are pleased to see the approval of this pre-surgery immunotherapy-based combination by the EMA, which provides an additional option in the early-stage NSCLC space."

"Opdivo in combination with chemotherapy is now the first and only approved immunotherapy-based neoadjuvant treatment option for non-small cell lung cancer in the EU, and we look forward to offering certain patients in Europe a solution that may help reduce their risk of disease recurrence, progression and death," said Abderrahim Oukessou, M.D., vice president, thoracic cancers global program lead, Bristol Myers Squibb. "This approval builds on our commitment to advancing treatment paradigms through immunotherapy research in earlier stages of cancer and reinforces the potential of Opdivo-based options to change outcomes for NSCLC patients across different treatment settings and stages of disease. We offer sincere thanks to the patients, investigators and their staff who helped make this approval possible."

Opdivo-based options have now been approved for the neoadjuvant or adjuvant treatment of four different cancer types in the EU: NSCLC (CheckMate -816), urothelial carcinoma (CheckMate -274), esophageal/gastroesophageal junction cancer (CheckMate -577) and melanoma (CheckMate -238). In addition, the company has a broad development program in earlier stages of cancer that spans several different tumor types.

CheckMate -816 Efficacy and Safety Results

Results from the CheckMate -816 trial in all-randomized patients regardless of tumor cell PD-L1 expression or stage of disease at minimum follow-up of 21 months include:

EFS (primary endpoint): Median EFS for patients treated with Opdivo with chemotherapy was 31.6 months when administered before surgery, compared to 20.8 months for patients treated with chemotherapy alone (HR 0.63, 97.38% CI: 0.43 to 0.91; p=0.0052).
pCR (primary endpoint): 24% of patients treated with Opdivo with chemotherapy prior to surgery achieved pCR, compared to 2.2% of patients treated with chemotherapy alone (HR 13.9, 99% CI: 3.49 to 55.75; p<0.0001), with pCR defined as no evidence of cancer cells in their resected tissue as assessed by a blinded independent pathology review.
OS (secondary endpoint): Opdivo with chemotherapy reduced the risk of death by 43% compared to chemotherapy alone (HR 0.57, 99.67% CI: 0.30 to 1.07).
Safety: In the pooled dataset of Opdivo with chemotherapy across tumor types (n = 1268), with a minimum follow-up ranging from 12.1 to 20 months for gastric, gastroesophageal junction or esophageal adenocarcinoma, or esophageal squamous cell carcinoma, or following three cycles of treatment for resectable NSCLC, the most frequent adverse reactions (≥ 10%) were nausea (51%), peripheral neuropathy (39%), fatigue (39%), diarrhea (33%), decreased appetite (33%), constipation (31%), vomiting (27%), stomatitis (22%), abdominal pain (21%), rash (18%), pyrexia (17%), musculoskeletal pain (16%), cough (13%), oedema (including peripheral oedema) (12%) and hypoalbuminemia (11%).
About CheckMate -816

CheckMate -816 is a Phase 3 randomized, open label, multi-center trial evaluating Opdivo with chemotherapy compared to chemotherapy alone as neoadjuvant treatment in patients with resectable stage IB to IIIA non-small cell lung cancer (per the 7th edition American Joint Committee on Cancer/Union for International Cancer Control staging criteria). For the primary analysis, 358 patients were randomized to receive either Opdivo 360 mg plus histology-based platinum doublet chemotherapy every three weeks for three cycles, or platinum doublet chemotherapy every three weeks for three cycles, followed by surgery. The primary endpoints of the trial are event-free survival and pathologic complete response, regardless of PD-L1 expression. Secondary endpoints include overall survival, major pathologic response, and time to death or distant metastases.

About Lung Cancer

Lung cancer is the leading cause of cancer deaths globally. Non-small cell lung cancer (NSCLC) is one of the most common types of lung cancer, representing up to 84% of diagnoses. Non-metastatic cases account for the majority of NSCLC diagnoses (approximately 60%, with up to half of these being resectable), and the proportion is expected to grow over time with enhanced screening programs. While many non-metastatic NSCLC patients are cured by surgery, 30% to 55% develop recurrence and die of their disease despite resection, contributing to a need for treatment options administered before surgery (neoadjuvant) and/or after surgery (adjuvant) to improve long-term outcomes.

Bristol Myers Squibb: Creating a Better Future for People with Cancer

Bristol Myers Squibb is inspired by a single vision — transforming patients’ lives through science. The goal of the company’s cancer research is to deliver medicines that offer each patient a better, healthier life and to make cure a possibility. Building on a legacy across a broad range of cancers that have changed survival expectations for many, Bristol Myers Squibb researchers are exploring new frontiers in personalized medicine, and through innovative digital platforms, are turning data into insights that sharpen their focus. Deep scientific expertise, cutting-edge capabilities and discovery platforms enable the company to look at cancer from every angle. Cancer can have a relentless grasp on many parts of a patient’s life, and Bristol Myers Squibb is committed to taking actions to address all aspects of care, from diagnosis to survivorship. Because as a leader in cancer care, Bristol Myers Squibb is working to empower all people with cancer to have a better future.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol Myers Squibb’s scientific expertise in the field of Immuno-Oncology, and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

U.S. FDA-APPROVED INDICATIONS

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric patients 12 years of age and older with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adult and pediatric patients 12 years of age and older with unresectable or metastatic melanoma.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of adult and pediatric patients 12 years of age and older with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.

OPDIVO (nivolumab), in combination with platinum-doublet chemotherapy, is indicated as neoadjuvant treatment of adult patients with resectable (tumors ≥4 cm or node positive) non-small cell lung cancer (NSCLC).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (≥1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with intermediate or poor risk advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with cabozantinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of adult patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

OPDIVO (nivolumab), as a single agent, is indicated for the adjuvant treatment of adult patients with urothelial carcinoma (UC) who are at high risk of recurrence after undergoing radical resection of UC.

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adult patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of completely resected esophageal or gastroesophageal junction cancer with residual pathologic disease in adult patients who have received neoadjuvant chemoradiotherapy (CRT).

OPDIVO (nivolumab), in combination with fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of adult patients with unresectable advanced or metastatic esophageal squamous cell carcinoma (ESCC).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable advanced or metastatic esophageal squamous cell carcinoma (ESCC).

OPDIVO (nivolumab), in combination with fluoropyrimidine- and platinum- containing chemotherapy, is indicated for the treatment of adult patients with advanced or metastatic gastric cancer, gastroesophageal junction cancer, and esophageal adenocarcinoma.

IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not include all possible severe and fatal immune- mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur after discontinuation of OPDIVO or YERVOY. Early identification and management are essential to ensure safe use of OPDIVO and YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and periodically during treatment with OPDIVO and before each dose of YERVOY. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). In general, if OPDIVO or YERVOY interruption or discontinuation is required, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reactions are not controlled with corticosteroid therapy. Toxicity management guidelines for adverse reactions that do not necessarily require systemic steroids (e.g., endocrinopathies and dermatologic reactions) are discussed below.

Immune-Mediated Pneumonitis

OPDIVO and YERVOY can cause immune-mediated pneumonitis. The incidence of pneumonitis is higher in patients who have received prior thoracic radiation. In patients receiving OPDIVO monotherapy, immune- mediated pneumonitis occurred in 3.1% (61/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.9%), and Grade 2 (2.1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 7% (31/456) of patients, including Grade 4 (0.2%), Grade 3 (2.0%), and Grade 2 (4.4%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 3.9% (26/666) of patients, including Grade 3 (1.4%) and Grade 2 (2.6%). In NSCLC patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%). Four patients (0.7%) died due to pneumonitis.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO, including Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO and YERVOY can cause immune-mediated colitis, which may be fatal. A common symptom included in the definition of colitis was diarrhea. Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients, including Grade 3 (1.7%) and Grade 2 (1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated colitis occurred in 25% (115/456) of patients, including Grade 4 (0.4%), Grade 3 (14%) and Grade 2 (8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated colitis occurred in 9% (60/666) of patients, including Grade 3 (4.4%) and Grade 2 (3.7%).

Immune-Mediated Hepatitis and Hepatotoxicity

OPDIVO and YERVOY can cause immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients, including Grade 4 (0.2%), Grade 3 (1.3%), and Grade 2 (0.4%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune- mediated hepatitis occurred in 15% (70/456) of patients, including Grade 4 (2.4%), Grade 3 (11%), and Grade 2 (1.8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 7% (48/666) of patients, including Grade 4 (1.2%), Grade 3 (4.9%), and Grade 2 (0.4%).

OPDIVO in combination with cabozantinib can cause hepatic toxicity with higher frequencies of Grade 3 and 4 ALT and AST elevations compared to OPDIVO alone. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. In patients receiving OPDIVO and cabozantinib, Grades 3 and 4 increased ALT or AST were seen in 11% of patients.

Immune-Mediated Endocrinopathies

OPDIVO and YERVOY can cause primary or secondary adrenal insufficiency, immune-mediated hypophysitis, immune-mediated thyroid disorders, and Type 1 diabetes mellitus, which can present with diabetic ketoacidosis. Withhold OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). For Grade 2 or higher adrenal insufficiency, initiate symptomatic treatment, including hormone replacement as clinically indicated. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism; initiate hormone replacement as clinically indicated. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism; initiate hormone replacement or medical management as clinically indicated. Monitor patients for hyperglycemia or other signs and symptoms of diabetes; initiate treatment with insulin as clinically indicated.

In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994), including Grade 3 (0.4%) and Grade 2 (0.6%).In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, adrenal insufficiency occurred in 8% (35/456), including Grade 4 (0.2%), Grade 3 (2.4%), and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, adrenal insufficiency occurred in 7% (48/666) of patients, including Grade 4 (0.3%), Grade 3 (2.5%), and Grade 2 (4.1%). In patients receiving OPDIVO and cabozantinib, adrenal insufficiency occurred in 4.7% (15/320) of patients, including Grade 3 (2.2%) and Grade 2 (1.9%).

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients, including Grade 3 (0.2%) and Grade 2 (0.3%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypophysitis occurred in 9% (42/456), including Grade 3 (2.4%) and Grade 2 (6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypophysitis occurred in 4.4% (29/666) of patients, including Grade 4 (0.3%), Grade 3 (2.4%), and Grade 2 (0.9%).

In patients receiving OPDIVO monotherapy, thyroiditis occurred in 0.6% (12/1994) of patients, including Grade 2 (0.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, thyroiditis occurred in 2.7% (22/666) of patients, including Grade 3 (4.5%) and Grade 2 (2.2%).

In patients receiving OPDIVO monotherapy, hyperthyroidism occurred in 2.7% (54/1994) of patients, including Grade 3 (<0.1%) and Grade 2 (1.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hyperthyroidism occurred in 9% (42/456) of patients, including Grade 3 (0.9%) and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hyperthyroidism occurred in 12% (80/666) of patients, including Grade 3 (0.6%) and Grade 2 (4.5%).

In patients receiving OPDIVO monotherapy, hypothyroidism occurred in 8% (163/1994) of patients, including Grade 3 (0.2%) and Grade 2 (4.8%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypothyroidism occurred in 20% (91/456) of patients, including Grade 3 (0.4%) and Grade 2 (11%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypothyroidism occurred in 18% (122/666) of patients, including Grade 3 (0.6%) and Grade 2 (11%).

In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients, including Grade 3 (0.4%) and Grade 2 (0.3%), and 2 cases of diabetic ketoacidosis. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, diabetes occurred in 2.7% (15/666) of patients, including Grade 4 (0.6%), Grade 3 (0.3%), and Grade 2 (0.9%).

Immune-Mediated Nephritis with Renal Dysfunction

OPDIVO and YERVOY can cause immune-mediated nephritis. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.5%), and Grade 2 (0.6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated nephritis with renal dysfunction occurred in 4.1% (27/666) of patients, including Grade 4 (0.6%), Grade 3 (1.1%), and Grade 2 (2.2%).

Immune-Mediated Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS) has occurred with PD-1/PD-L1 blocking antibodies. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, SJS, TEN, and DRESS. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non- bullous/exfoliative rashes.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information).

In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients, including Grade 3 (1.1%) and Grade 2 (2.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated rash occurred in 28% (127/456) of patients, including Grade 3 (4.8%) and Grade 2 (10%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated rash occurred in 16% (108/666) of patients, including Grade 3 (3.5%) and Grade 2 (4.2%).

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received OPDIVO monotherapy or OPDIVO in combination with YERVOY or were reported with the use of other PD-1/PD-L1 blocking antibodies. Severe or fatal cases have been reported for some of these adverse reactions: cardiac/vascular: myocarditis, pericarditis, vasculitis; nervous system: meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; ocular: uveitis, iritis, and other ocular inflammatory toxicities can occur; gastrointestinal: pancreatitis to include increases in serum amylase and lipase levels, gastritis, duodenitis; musculoskeletal and connective tissue: myositis/polymyositis, rhabdomyolysis, and associated sequelae including renal failure, arthritis, polymyalgia rheumatica; endocrine: hypoparathyroidism; other (hematologic/immune): hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis (HLH), systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: nervous system: autoimmune neuropathy (2%), myasthenic syndrome/myasthenia gravis, motor dysfunction; cardiovascular: angiopathy, temporal arteritis; ocular: blepharitis, episcleritis, orbital myositis, scleritis; gastrointestinal: pancreatitis (1.3%); other (hematologic/immune): conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis.

Some ocular IMAR cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada–like syndrome, which has been observed in patients receiving OPDIVO and YERVOY, as this may require treatment with systemic corticosteroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO and YERVOY can cause severe infusion-related reactions. Discontinue OPDIVO and YERVOY in patients with severe (Grade 3) or life-threatening (Grade 4) infusion-related reactions. Interrupt or slow the rate of infusion in patients with mild (Grade 1) or moderate (Grade 2) infusion-related reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30- minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI- H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with OPDIVO or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between OPDIVO or YERVOY and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with OPDIVO and YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on its mechanism of action and findings from animal studies, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. The effects of YERVOY are likely to be greater during the second and third trimesters of pregnancy. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO and YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In randomized clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

There are no data on the presence of OPDIVO or YERVOY in human milk, the effects on the breastfed child, or the effects on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 238, serious adverse reactions occurred in 18% of patients receiving OPDIVO (n=452). Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. In Checkmate 816, serious adverse reactions occurred in 30% of patients (n=176) who were treated with OPDIVO in combination with platinum-doublet chemotherapy. Serious adverse reactions in >2% included pneumonia and vomiting. No fatal adverse reactions occurred in patients who received OPDIVO in combination with platinum-doublet chemotherapy. In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (≥2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 057, fatal adverse reactions occurred; these included events of infection (7 patients, including one case of Pneumocystis jirovecii pneumonia), pulmonary embolism (4 patients), and limbic encephalitis (1 patient). In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY (n=547). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 9ER, serious adverse reactions occurred in 48% of patients receiving OPDIVO and cabozantinib (n=320). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pneumonia, pneumonitis, pulmonary embolism, urinary tract infection, and hyponatremia. Fatal intestinal perforations occurred in 3 (0.9%) patients. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion- related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 274, serious adverse reactions occurred in 30% of patients receiving OPDIVO (n=351). The most frequent serious adverse reaction reported in ≥2% of patients receiving OPDIVO was urinary tract infection. Fatal adverse reactions occurred in 1% of patients; these included events of pneumonitis (0.6%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in ≥2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in ≥4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in ≥2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease, and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%). In Checkmate 577, serious adverse reactions occurred in 33% of patients receiving OPDIVO (n=532). A serious adverse reaction reported in ≥2% of patients who received OPDIVO was pneumonitis. A fatal reaction of myocardial infarction occurred in one patient who received OPDIVO. In Checkmate 648, serious adverse reactions occurred in 62% of patients receiving OPDIVO in combination with chemotherapy (n=310). The most frequent serious adverse reactions reported in ≥2% of patients who received OPDIVO with chemotherapy were pneumonia (11%), dysphagia (7%), esophageal stenosis (2.9%), acute kidney injury (2.9%), and pyrexia (2.3%). Fatal adverse reactions occurred in 5 (1.6%) patients who received OPDIVO in combination with chemotherapy; these included pneumonitis, pneumatosis intestinalis, pneumonia, and acute kidney injury. In Checkmate 648, serious adverse reactions occurred in 69% of patients receiving OPDIVO in combination with YERVOY (n=322). The most frequent serious adverse reactions reported in ≥2% who received OPDIVO in combination with YERVOY were pneumonia (10%), pyrexia (4.3%), pneumonitis (4.0%), aspiration pneumonia (3.7%), dysphagia (3.7%), hepatic function abnormal (2.8%), decreased appetite (2.8%), adrenal insufficiency (2.5%), and dehydration (2.5%). Fatal adverse reactions occurred in 5 (1.6%) patients who received OPDIVO in combination with YERVOY; these included pneumonitis, interstitial lung disease, pulmonary embolism, and acute respiratory distress syndrome. In Checkmate 649, serious adverse reactions occurred in 52% of patients treated with OPDIVO in combination with chemotherapy (n=782). The most frequent serious adverse reactions reported in ≥2% of patients treated with OPDIVO in combination with chemotherapy were vomiting (3.7%), pneumonia (3.6%), anemia (3.6%), pyrexia (2.8%), diarrhea (2.7%), febrile neutropenia (2.6%), and pneumonitis (2.4%). Fatal adverse reactions occurred in 16 (2.0%) patients who were treated with OPDIVO in combination with chemotherapy; these included pneumonitis (4 patients), febrile neutropenia (2 patients), stroke (2 patients), gastrointestinal toxicity, intestinal mucositis, septic shock, pneumonia, infection, gastrointestinal bleeding, mesenteric vessel thrombosis, and disseminated intravascular coagulation.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 238, the most common adverse reactions (≥20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Checkmate 816, the most common (>20%) adverse reactions in the OPDIVO plus chemotherapy arm (n=176) were nausea (38%), constipation (34%), fatigue (26%), decreased appetite (20%), and rash (20%). In Checkmate 227, the most common (≥20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 743, the most common adverse reactions (≥20%) in patients receiving OPDIVO plus YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 9ER, the most common adverse reactions (≥20%) in patients receiving OPDIVO and cabozantinib (n=320) were diarrhea (64%), fatigue (51%), hepatotoxicity (44%), palmar-plantar erythrodysaesthesia syndrome (40%), stomatitis (37%), rash (36%), hypertension (36%), hypothyroidism (34%), musculoskeletal pain (33%), decreased appetite (28%), nausea (27%), dysgeusia (24%), abdominal pain (22%), cough (20%) and upper respiratory tract infection (20%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO (n=236) were cough (14%) and dyspnea (14%) at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 274, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=351) were rash (36%), fatigue (36%), diarrhea (30%), pruritus (30%), musculoskeletal pain (28%), and urinary tract infection (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent (n=74), the most common adverse reactions (≥20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), the most common adverse reactions (≥20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Attraction-3, the most common adverse reactions (≥20%) in OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%). In Checkmate 577, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=532) were fatigue (34%), diarrhea (29%), nausea (23%), rash (21%), musculoskeletal pain (21%), and cough (20%). In Checkmate 648, the most common adverse reactions (≥20%) in patients treated with OPDIVO in combination with chemotherapy (n=310) were nausea (65%), decreased appetite (51%), fatigue (47%), constipation (44%), stomatitis (44%), diarrhea (29%), and vomiting (23%). In Checkmate 648, the most common adverse reactions reported in ≥20% of patients treated with OPDIVO in combination with YERVOY were rash (31%), fatigue (28%), pyrexia (23%), nausea (22%), diarrhea (22%), and constipation (20%). In Checkmate 649, the most common adverse reactions (≥20%) in patients treated with OPDIVO in combination with chemotherapy (n=782) were peripheral neuropathy (53%), nausea (48%), fatigue (44%), diarrhea (39%), vomiting (31%), decreased appetite (29%), abdominal pain (27%), constipation (25%), and musculoskeletal pain (20%).

Please see US Full Prescribing Information for OPDIVO and YERVOY.

Clinical Trials and Patient Populations

Checkmate 037–previously treated metastatic melanoma; Checkmate 066—previously untreated metastatic melanoma; Checkmate 067–previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 238–adjuvant treatment of melanoma; Checkmate 816–neoadjuvant non-small cell lung cancer, in combination with platinum-doublet chemotherapy; Checkmate 227—previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LA–previously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 017–second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057–second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 743–previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 214–previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 9ER–previously untreated renal cell carcinoma, in combination with cabozantinib; Checkmate 025–previously treated renal cell carcinoma; Checkmate 205/039–classical Hodgkin lymphoma; Checkmate 141–recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275–previously treated advanced or metastatic urothelial carcinoma; Checkmate 274–adjuvant treatment of urothelial carcinoma; Checkmate 142– MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 142–MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040–hepatocellular carcinoma, in combination with YERVOY; Attraction-3–esophageal squamous cell carcinoma; Checkmate 577–adjuvant treatment of esophageal or gastroesophageal junction cancer; Checkmate 648—previously untreated, unresectable advanced recurrent or metastatic esophageal squamous cell carcinoma; Checkmate 648—previously untreated, unresectable advanced recurrent or metastatic esophageal squamous cell carcinoma; Checkmate 649–previously untreated advanced or metastatic gastric cancer, gastroesophageal junction and esophageal adenocarcinoma.