InnoCare Announces First Patient Dosed in Clinical Trial of Novel SHP2 Allosteric Inhibitor ICP-189 in China

On June 21, 2022 InnoCare Pharma (HKEX: 09969), a leading biopharmaceutical company focusing on the treatment of cancer and autoimmune diseases, reported that the first patient has been dosed in clinical trial of the Company’s novel SHP2 (Src Homology 2 domain containing protein tyrosine phosphatase) allosteric inhibitor ICP-189 in China (Press release, InnoCare Pharma, JUN 21, 2022, View Source [SID1234616153]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

ICP-189 is a potent and selective oral allosteric inhibitor of SHP2, developed for the treatment of solid tumors as a single agent and/or in combination with other antitumor agents.

SHP2 is involved in mediating MAPK signaling pathway and immune checkpoint pathway for the regulation of cellular proliferation and survival. Preclinical studies have shown that ICP-189 has excellent selectivity over other phosphatases and demonstrated significant anti-tumor effects in various xenograft models.

Dr. Jasmine Cui, Co-Founder, Chairwoman and CEO of InnoCare, said, "ICP-189 has entered into clinical stage in China and the U.S. SHP2 inhibitor has high potential for targeting a variety of solid tumors. We will push forward the clinical development of ICP-189 to provide treatment options for patients in China and around the world."

Novocure Enrolls First Patient in KEYNOTE-B36, a Pilot Study of Tumor Treating Fields Together with KEYTRUDA® for Patients with First-Line Stage III Non-Small Cell Lung Cancer

On June 21, 2022 Novocure (NASDAQ: NVCR) reported the first patient has been enrolled in its phase 2 pilot KEYNOTE-B36 study, conducted in collaboration with MSD, a tradename of Merck & Co., Inc., Rahway, NJ, USA (Press release, NovoCure, JUN 21, 2022, View Source [SID1234616152]). KEYNOTE-B36 is designed to evaluate the safety and effectiveness of Tumor Treating Fields (TTFields) together with KEYTRUDA (pembrolizumab), MSD’s anti-PD-1 therapy, for the first-line treatment of locally advanced or metastatic intrathoracic non-small cell lung cancer (NSCLC) that expresses PD-L1 .

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"This is an important next step for our thoracic program," said William Doyle, Novocure’s Executive Chairman. "KEYNOTE-B36 represents one of Novocure’s five ongoing clinical trials exploring the potential of Tumor Treating Fields to complement immunotherapy agents. We look forward to continuing our studies in partnership with Merck in hopes of treating many more patients in need."

KEYNOTE-B36 is a single arm, open-label phase 2 pilot study expected to enroll 66 patients. The primary endpoint of the study is objective response rate. Secondary endpoints include overall survival, progression free survival (PFS), PFS at six months, one-year survival rate, duration of response, disease control rate and frequency and severity of adverse events.

About Non-small Cell Lung Cancer
Lung cancer is the most common cause of cancer-related death worldwide, and NSCLC accounts for approximately 85% of all lung cancers. It is estimated that approximately 193,000 patients are diagnosed with NSCLC each year in the U.S.

Physicians use different combinations of surgery, radiation therapy and systemic therapies to treat NSCLC, depending on the stage of the disease. Surgery, which may be curative in a subset of patients, is usually used in early stages of the disease. Since 1991, radiation with a combination of platinum-based chemotherapy has been the first-line standard of care for locally advanced NSCLC and systemic therapy alone for those with metastatic disease. Certain immune checkpoint inhibitors have recently been approved for the first-line treatment of NSCLC and the standard of care in this setting appears to be evolving rapidly. The standard of care for second-line treatment is also evolving and may include platinum-based chemotherapy for patients who received immune checkpoint inhibitors as their first line regimen, pemetrexed, docetaxel or immune checkpoint inhibitors.

About Tumor Treating Fields
Tumor Treating Fields, or TTFields, are electric fields that disrupt cancer cell division. Fundamental scientific research extends across more than two decades and, in all preclinical research to date, TTFields have demonstrated a consistent anti-mitotic effect. TTFields therapy is intended principally for use together with other standard-of-care cancer treatments. There is a growing body of evidence that supports TTFields’ broad applicability with certain other cancer therapies, including radiation therapy, certain chemotherapies and certain immunotherapies. In clinical research and commercial experience to date, TTFields therapy has exhibited no systemic toxicity, with mild to moderate skin irritation being the most common side effect. The TTFields global development program includes a network of preclinical collaborators and a broad range of clinical trials across all phases, including four phase 3 pivotal trials in a variety of tumor types. To date, more than 24,000 patients have been treated with TTFields therapy.

The NovoTTF-200T is an investigational device for the treatment of NSCLC. Safety and efficacy have not been established for this indication.

GRAIL and Fountain Health Insurance Partner to Provide Coverage of Galleri® Multi-cancer Early Detection Test

On June 21, 2022 GRAIL, LLC, a healthcare company whose mission is to detect cancer early, when it can be cured, and Fountain Health Insurance ("Fountain Health") reported a partnership that will offer Galleri, GRAIL’s multi-cancer early detection (MCED) blood test, to Fountain Health customers at 100% coverage as part of its annual wellness benefits (Press release, Grail, JUN 21, 2022, View Source [SID1234616151]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Our partnership with GRAIL is an outstanding opportunity to change the health story for thousands of people by finding cancer early so we can improve outcomes. However, saving the life of an employee or loved one is what truly will make this transformative. What better gift could you give to your employees?" says Robert J. Rossiter, chief executive officer at Fountain Health.

The Galleri test is a first-of-its-kind MCED blood test. In a clinical study, the Galleri test demonstrated the ability to detect a shared signal from more than 50 types of cancers, over 45 of which lack recommended screening tests today. Using advanced genomics and machine learning, the test also determines the origin of the cancer signal, which can then guide diagnostic workup. Early detection of cancer has been demonstrated to improve cancer outcomes, yet today, the majority of cancers are detected in late stages because only five cancer types have recommended screenings – breast, cervical, colon, lung and prostate cancers.

"We applaud Fountain Health for its commitment to proactive care and finding cancer earlier, when treatment is more likely to be successful," said Bob Ragusa, chief executive officer at GRAIL. "By offering the Galleri test and covering it at 100%, Fountain Health is helping ensure more people have access to critical health information that could give a better chance of surviving cancer, which still claims the lives of more than 600,000 people annually in the U.S."

BeiGene Announces Acceptance of Supplemental Biologics License Application in China for Anti-PD-1 Inhibitor Tislelizumab

On June 21, 2022 BeiGene (NASDAQ: BGNE; HKEX: 06160; SSE: 688235), a global, science-driven biotechnology company focused on developing innovative and affordable medicines to improve treatment outcomes and access for patients worldwide, reported that the Center for Drug Evaluation (CDE) of the China National Medical Products Administration (NMPA) has accepted a supplemental biologics license application (sBLA) for the company’s anti-PD-1 inhibitor, tislelizumab, in combination with chemotherapy as a first-line treatment for patients with advanced or metastatic gastric or gastroesophageal junction adenocarcinoma whose tumors express PD-L1 (Press release, BeiGene, JUN 21, 2022, View Source [SID1234616150]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The sBLA is supported by data from an interim analysis from the global RATIONALE 305 trial of tislelizumab versus placebo in combination with chemotherapy as a first-line treatment for patients with locally advanced, unresectable or metastatic gastric or gastroesophageal junction (G/GEJ) adenocarcinoma. In China, gastric cancer (GC) has become the third most common canceri and adenocarcinoma represents the major histologic subtype of GC, over 90% of reported cases across the worldii.

Lai Wang, Ph.D., Global Head of R&D at BeiGene said, "Gastric cancer is the second leading cause of cancer-related deaths in China and there are few options to treat metastatic disease. We are pleased that our rigorous clinical development program has demonstrated a survival benefit with tislelizumab and chemotherapy treatment in patients whose tumors express PD-L1 and look forward to working with regulators to bring forward this potential new treatment option."

Tislelizumab is currently under review by the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for advanced or metastatic ESCC after prior chemotherapy. The EMA is also reviewing tislelizumab for advanced or metastatic non-small cell lung cancer (NSCLC) after prior chemotherapy, and in combination with chemotherapy for previously untreated advanced or metastatic NSCLC. In January 2021, BeiGene announced a collaboration with Novartis to accelerate the clinical development and marketing of tislelizumab in North America, Europe, and Japan. Tislelizumab is approved by the China National Medical Products Administration (NMPA) as a treatment for nine indications and this sBLA is the 10th regulatory submission for tislelizumab in China. Tislelizumab is not approved for use outside of China.

About RATIONALE 305 (NCT03777657)
RATIONALE 305 is a randomized, double-blind, placebo-controlled, global Phase 3 trial comparing the efficacy and safety of tislelizumab combined with platinum and fluoropyrimidine chemotherapy and placebo combined with platinum and fluoropyrimidine chemotherapy as a first-line treatment for patients with locally advanced, unresectable or metastatic G/GEJ adenocarcinoma. The primary endpoint of the trial is overall survival (OS). Secondary endpoints include progression-free survival (PFS), overall response rate (ORR), duration of response (DoR), and safety. A total of 997 patients from 13 countries and regions across the world were enrolled and randomized 1:1 to receive either tislelizumab and chemotherapy or placebo and chemotherapy.

About Tislelizumab
Tislelizumab is a humanized IgG4 anti-PD-1 monoclonal antibody specifically designed to minimize binding to Fc-gamma (Fcγ) receptors on macrophages, helping to aid the body’s immune cells to detect and fight tumors. In pre-clinical studies, binding to Fcγ receptors on macrophages has been shown to compromise the anti-tumor activity of PD-1 antibodies through activation of antibody-dependent macrophage-mediated killing of T effector cells.

Tislelizumab is the first drug from BeiGene’s immuno-oncology biologics program and is being developed internationally as a monotherapy and in combination with other therapies for the treatment of a broad array of both solid tumor and hematologic cancers. In January 2021, BeiGene announced a collaboration with Novartis to accelerate the clinical development and marketing of tislelizumab in North America, Europe, and Japan.

BeiGene has initiated or completed more than 20 potentially registration-enabling clinical trials in 35 countries and regions, including 17 Phase 3 trials and four pivotal Phase 2 trials. More information on the clinical trial program for tislelizumab can be found at: View Source

BeiGene Oncology
BeiGene is committed to advancing best- and first-in-class clinical candidates internally or with like-minded partners to develop impactful and affordable medicines for patients across the globe. We have a growing R&D and medical affairs team of approximately 2,900 colleagues dedicated to advancing more than 100 clinical trials that have involved more than 16,000 subjects. Our expansive portfolio is directed predominantly by our internal colleagues supporting clinical trials in more than 45 countries and regions. Hematology-oncology and solid tumor targeted therapies and immuno-oncology are key focus areas for the Company, with both mono- and combination therapies prioritized in our research and development. BeiGene currently has three approved medicines discovered and developed in our own labs: BTK inhibitor BRUKINSA in the U.S., China, the European Union, Great Britain, Canada, Australia, and additional international markets; and the non-FC-gamma receptor binding anti-PD-1 antibody tislelizumab as well as the PARP inhibitor pamiparib in China.

BeiGene also partners with innovative companies who share our goal of developing therapies to address global health needs. We commercialize a range of oncology medicines in China licensed from Amgen, Bristol Myers Squibb, EUSA Pharma and Bio-Thera. We also plan to address greater areas of unmet need globally through our other collaborations including with Mirati Therapeutics, Seagen, and Zymeworks.

In January 2021, BeiGene and Novartis announced a collaboration granting Novartis rights to co-develop, manufacture, and commercialize BeiGene’s anti-PD1 antibody, tislelizumab, in North America, Europe, and Japan. Building upon this productive collaboration, including a biologics license application (BLA) under U.S. Food and Drug Administration (FDA) review, BeiGene and Novartis announced an option, collaboration, and license agreement in December 2021 for BeiGene’s TIGIT inhibitor, ociperlimab, that is in Phase 3 development. Novartis and BeiGene also entered into a strategic commercial agreement through which BeiGene will promote five approved Novartis Oncology products across designated regions of China.

PROpel Phase III Trial Positive Results of LYNPARZA® (olaparib) Plus Abiraterone in 1st-line Metastatic Castration-resistant Prostate Cancer Published in New England Journal of Medicine Evidence

On June 21, 2022 AstraZeneca and Merck & Co., Inc., reported that Results from the PROpel Phase III trial showed that LYNPARZA (olaparib), reported and commercialized known as MSD outside the US and Canada, in combination with abiraterone significantly improved radiographic progression-free survival (rPFS) versus abiraterone alone as a 1st-line treatment for patients with metastatic castration-resistant prostate cancer (mCRPC) with or without homologous recombination repair (HRR) gene mutations (Press release, AstraZeneca, JUN 21, 2022, View Source [SID1234616149]). The results, showing the combination reduced the risk of disease progression or death by 34% versus abiraterone alone (based on a hazard ratio [HR] of 0.66; 95% confidence interval [CI] 0.54-0.81; p<0.0001), are now published in the New England Journal of Medicine (NEJM) Evidence.1

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Prostate cancer is the second most common cancer in male patients, causing approximately 375,000 deaths in 2020.1 In clinical trial settings, overall survival for patients with mCRPC is approximately 3 years, while in the real-world setting this is shorter.2-5 Approximately half of patients with mCRPC may receive only one line of active treatment, with diminishing benefit of subsequent therapies.6-10 HRR gene mutations occur in approximately 20-30% of patients with mCRPC.3,11

Noel Clarke, Urological Surgeon and Professor of Urological Oncology at The Christie/Salford Royal Hospitals and University of Manchester; the PROpel trial joint Chief investigator and joint lead author of the NEJM Evidence manuscript, said: "It is critically important that we identify new first-line treatment options for patients with metastatic castration-resistant prostate cancer. The data published in NEJM Evidence emphasize the therapeutic potential of combining olaparib with abiraterone and prednisone and demonstrate efficacy in a wider group of patients beyond those with documented DNA repair deficiency."

Cristian Massacesi, Chief Medical Officer and Oncology Chief Development Officer, AstraZeneca, said: "These data demonstrate that the combination of LYNPARZA with abiraterone and prednisone afforded patients a median radiographic progression-free survival of over two years, regardless of biomarker status. If approved, the combination will offer patients with and without HRR gene mutations a much needed new treatment option."

Dr. Eliav Barr, Senior Vice President and Head of Global Clinical Development, Chief Medical Officer, Merck Research Laboratories, said "Publication of the PROpel data in NEJM Evidence reflects the benefit seen with the combination of LYNPARZA plus abiraterone and prednisone in the first-line setting of metastatic castration-resistant prostate cancer, and we are pleased that these data have been selected for one of the first issues of this new journal."

In September 2021, at a planned interim analysis, the Independent Data Monitoring Committee concluded that the PROpel trial met the primary endpoint of rPFS. The results were presented in February 2022 during 2022 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Genitourinary Cancers Symposium and additional data on Safety and Tolerability as well as Pharmacokinetics were presented at ASCO (Free ASCO Whitepaper) 2022 on June 6, 2022.

In the PROpel Phase III trial, on the primary endpoint, LYNPARZA in combination with abiraterone improved median rPFS to 24.8 months versus 16.6 for abiraterone alone. Results also showed that LYNPARZA in combination with abiraterone extended median rPFS by BICR (blinded independent central review) analysis by almost a year, with a median rPFS of 27.6 months versus 16.4 with abiraterone alone. Results also showed a favorable trend towards improved overall survival (OS) with LYNPARZA plus abiraterone versus abiraterone alone, however the difference did not reach statistical significance at the time of this data cut-off (28.6% maturity; based on a HR of 0.86; 95% CI 0.66-1.12; P=0.29). Data from the additional secondary efficacy endpoints of time to first subsequent therapy (TFST) (HR, 0.74; 95% CI, 0.61-0.90) and second progression-free survival (PFS2) (HR, 0.69; 95% CI, 0.51-0.94); and exploratory endpoints including objective response rate (ORR) (odds ratio, 1.60; 95% CI,1.02-2.53) as well as prostate-specific antigen levels, determining time to PSA progression (HR, 0.55; 95% CI, 0.45-0.68), further support the treatment benefit of LYNPARZA and abiraterone compared to abiraterone alone in the overall trial population.

The safety and tolerability of LYNPARZA in combination with abiraterone was in line with that observed in prior clinical trials and the known profiles of the individual medicines. There was no increase in the rate of discontinuation of abiraterone in patients treated with LYNPARZA in combination with abiraterone, and no detrimental effect on health-related quality of life versus those treated with abiraterone alone (FACT-P (Functional Assessment of Cancer Therapy-Prostate) questionnaire).

LYNPARZA is approved in the US for patients with HRR gene-mutated mCRPC (BRCA-mutated and other HRR gene mutations) who have progressed following prior treatment with enzalutamide or abiraterone; and in the EU, Japan and China for patients with BRCA-mutated mCRPC who have progressed following prior therapy that included a new hormonal agent (NHA).

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS

Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in approximately 1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The median duration of therapy in patients who developed MDS/AML was 2 years (range: <6 months to >10 years). All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in 0.8% of patients exposed to LYNPARZA monotherapy, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females

Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males

Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.

ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients who received LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), urinary tract infection (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients who received LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONS—First-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab

Most common adverse reactions (Grades 1-4) in ≥10% of patients treated with LYNPARZA/bevacizumab compared to a ≥5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%), and leukopenia (18%). In addition, the most common adverse reactions (≥10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%), and headache (14%).

In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%), and decrease in platelets (35%).

ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients who received LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients who received LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONS—Advanced gBRCAm Ovarian Cancer After 3 or More Lines of Chemotherapy

Most common adverse reactions (Grades 1-4) in ≥20% of patients who received LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients who received LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—Adjuvant Treatment of gBRCAm, HER2-Negative, High-Risk Early Breast Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients who received LYNPARZA in the adjuvant setting for OlympiA were: nausea (57%), fatigue (including asthenia) (42%), anemia (24%), vomiting (23%), headache (20%), diarrhea (18%), leukopenia (17%), neutropenia (16%), decreased appetite (13%), dysgeusia (12%), dizziness (11%), and stomatitis (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients who received LYNPARZA in the adjuvant setting for OlympiA were: decrease in lymphocytes (77%), increase in mean corpuscular volume (67%), decrease in hemoglobin (65%), decrease in leukocytes (64%), and decrease in absolute neutrophil count (39%).

ADVERSE REACTIONS—gBRCAm, HER2-Negative Metastatic Breast Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients who received LYNPARZA in the metastatic setting for OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients who received LYNPARZA in the metastatic setting for OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

ADVERSE REACTIONS—First-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma

Most common adverse reactions (Grades 1-4) in ≥10% of patients who received LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients who received LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—HRR Gene-mutated Metastatic Castration-Resistant Prostate Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients who received LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients who received LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).

DRUG INTERACTIONS

Anticancer Agents: Clinical studies of LYNPARZA with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid coadministration of strong or moderate CYP3A inhibitors when using LYNPARZA. If a strong or moderate CYP3A inhibitor must be coadministered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid coadministration of strong or moderate CYP3A inducers when using LYNPARZA.

USE IN SPECIFIC POPULATIONS

Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

INDICATIONS

LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance HRD-Positive Advanced Ovarian Cancer in Combination with Bevacizumab

In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

a deleterious or suspected deleterious BRCA mutation, and/or
genomic instability
Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer

For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm Ovarian Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Adjuvant Treatment of gBRCAm, HER2-Negative, High-Risk Early Breast Cancer

For the adjuvant treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative high-risk early breast cancer who have been treated with neoadjuvant or adjuvant chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm, HER2-Negative Metastatic Breast Cancer

For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant, or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

HRR Gene-mutated Metastatic Castration-Resistant Prostate Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Please see complete Prescribing Information, including Medication Guide.

Notes

Metastatic castration-resistant prostate cancer

Metastatic prostate cancer is associated with a significant mortality rate.12 Development of prostate cancer is often driven by male sex hormones called androgens, including testosterone.13

In patients with mCRPC, their prostate cancer grows and spreads to other parts of the body despite the use of androgen-deprivation therapy to block the action of male sex hormones.6 Approximately 10-20% of patients with advanced prostate cancer will develop castration-resistant prostate cancer (CRPC) within five years, and at least 84% of these patients will have metastases at the time of CRPC diagnosis.6

Of patients with no metastases at CRPC diagnosis, 33% are likely to develop metastases within two years.5 Despite the advances in mCRPC treatment in the past decade with taxane and new hormonal agent (NHA) treatment, once patients failed first line therapy, the treatment effect of second line anti-cancer therapy appears to diminish significantly hence there is high unmet medical need in this population.6,8,9,14

PROpel

PROpel is a randomized, double-blind, multi-center Phase III trial testing the efficacy, safety, and tolerability of LYNPARZA versus placebo when given in addition to abiraterone in men with mCRPC who had not received prior chemotherapy or NHAs in the 1st-line setting.

Men in both treatment groups will also receive either prednisone or prednisolone twice daily. The primary endpoint is rPFS and secondary endpoints include overall survival (OS), time to disease progression or death (PFS2), and time to first subsequent therapy (TFST).

For more information about the trial please visit ClinicalTrials.gov.

LYNPARZA

LYNPARZA (olaparib) is a first-in-class PARP inhibitor and the first targeted treatment to block DNA damage response (DDR) in cells/tumors harboring a deficiency in HRR, such as those with mutations in BRCA1 and/or BRCA2, or those where deficiency is induced by other agents (such as NHAs).

Inhibition of poly-ADP ribose polymerase (PARP) proteins with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. In the PROpel Phase III trial, LYNPARZA is combined with abiraterone, an NHA which targets the androgen receptor (AR) pathway.

Androgen receptor signaling engages a transcriptional program that is critical for tumor cell growth & survival in prostate cancer.15,16 Preclinical models have identified interactions between PARP signaling and the AR pathway which support the observation of a combined anti-tumor effect of LYNPARZA and NHAs, like abiraterone, in both HRR deficient and HRR proficient prostate cancer.17,18,19

The PARP1 protein has been reported to be required for the transcriptional activity of androgen receptors; therefore inhibiting PARP with LYNPARZA may impair the expression of androgen receptor target genes and enhance the activity of NHAs.15,18,20 Additionally, it is thought that abiraterone may alter/inhibit the transcription of some HRR genes which may induce HRR deficiency and increase sensitivity to PARP inhibition.17,19,21,22

LYNPARZA is currently approved in a number of countries across PARP-dependent tumor types with defects and dependencies in the DDR pathway including maintenance treatment of platinum-sensitive relapsed ovarian cancer and as both monotherapy and in combination with bevacizumab for the 1st-line maintenance treatment of BRCA-mutated (BRCAm) and homologous recombination repair deficient (HRD)-positive advanced ovarian cancer, respectively; for gBRCAm, HER2-negative metastatic breast cancer (in the EU and Japan this includes locally advanced breast cancer); for gBRCAm, HER2-negative high-risk early breast cancer (US only); for gBRCAm metastatic pancreatic cancer; and HRR gene-mutated metastatic castration-resistant prostate cancer (BRCAm only in the EU and Japan).

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, is the foundation of AstraZeneca’s industry-leading portfolio of potential new medicines targeting DDR mechanisms in cancer cells.

The AstraZeneca and Merck strategic oncology collaboration

In July 2017, AstraZeneca and Merck & Co., Inc., Kenilworth, NJ, US, known as MSD outside the US and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize LYNPARZA (olaparib), the world’s first PARP inhibitor, and selumetinib, a mitogen-activated protein kinase (MEK) inhibitor, for multiple cancer types.

Working together, the companies will develop LYNPARZA and selumetinib in combination with other potential new medicines and as monotherapies. Independently, the companies will develop LYNPARZA and selumetinib in combination with their respective PD-L1 and PD-1 medicines.

AstraZeneca in oncology

AstraZeneca is leading a revolution in oncology with the ambition to provide cures for cancer in every form, following the science to understand cancer and all its complexities to discover, develop and deliver life-changing medicines to patients.

The Company’s focus is on some of the most challenging cancers. It is through persistent innovation that AstraZeneca has built one of the most diverse portfolios and pipelines in the industry, with the potential to catalyze changes in the practice of medicine and transform the patient experience.

AstraZeneca has the vision to redefine cancer care and, one day, eliminate cancer as a cause of death.