Green3Bio Announces Publication of Pre-Clinical Data Demonstrating SIK2 Inhibition (including GRN-300) Enhances PARP Inhibitor Activity Synergistically in Ovarian and Triple Negative Breast Cancers.

On June 24, 2022 Green3Bio, a subsidiary of Greenfire Bio, reported a publication in the Journal of Clinical Investigation1 led by researchers at The University of Texas MD Anderson Cancer Center demonstrating that SIK2 inhibitors, including GRN-300 sensitized ovarian and triple-negative breast cancer (TNBC) cells and xenografts to PARP inhibitors (Press release, Greenfire, JUN 24, 2022, View Source [SID1234616243]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Zhen Lu, M.D., and Robert Bast, M.D., and colleagues demonstrated that a combination of PARPi and SIKi provides a novel therapeutic approach to enhance PARPi sensitivity in ovarian cancers that initially respond to PARPi and eventually develop drug resistance.

The major findings from the preclinical research study include:

GRN-300 treatment sensitizes ovarian and breast cancer cells by enhancing olaparib-mediated inhibition of PARP enzyme activity
The transcription of DNA repair and apoptosis genes is regulated by SIK2 inhibition by GRN-300
GRN-300 enhances olaparib-induced DNA DSB (double-strand break) and apoptosis
Co-administration of GRN-300 and olaparib is synergistic in inhibiting tumor growth in animal models of ovarian cancer and TNBC.
These findings provide strong preclinical evidence supporting future clinical trials to determine whether the combination will benefit patients with ovarian and triple negative breast cancers. Animal studies, particularly those with olaparib and GRN-300, did not show significant toxicity based on weight loss. Pre-clinical toxicology studies in rodents and dogs showed no hematologic toxicity, which is particularly important for combination with PARPi.

"Patients with ovarian and triple-negative breast cancers are in great need for more effective treatments due to the high prevalence of acquired resistance to standard therapies that involve PARP inhibition," said Steve Morris, MD (Chairperson, Scientific Advisory Board of Greenfire Bio). He added, "The GRN-300 preclinical data published in The Journal of Clinical Investigation shows the potential of GRN-300 and its unique mechanism of action through SIK2/3 inhibition to help change the combination treatment paradigm in gynecologic and breast cancers, irrespective of BRCA mutation status."

Ajit Gill, CEO and founder of Greenfire Bio, commented that "This publication provides further support for the development of our clinical asset GRN-300. We believe this agent has the potential to improve treatment of ovarian and other cancers – both as a single agent and in combination with existing therapies such as the PARP inhibitor olaparib that is indicated for the treatment of ovarian and breast cancers under the tradename Lynparza."

These data further support the preclinical proof-of-concept for SIK2 inhibitors as potential cancer therapeutics in combination with carboplatin for hard-to-treat ovarian cancer, recently published in Cancers, and they support the continued efforts in our first-in-human clinical trial ongoing at MD Anderson.

About Ovarian Cancer

According to the American Cancer Society, ovarian cancer ranks fifth in cancer deaths among women. They estimate that in 2022 there will be about 19,880 new cases of ovarian cancer diagnosed in the United States and that about 12,810 will die of the disease. According to the World Cancer Research Fund International, there were about 313,000 new cases of ovarian cancer diagnosed worldwide in 2020. Ovarian cancer is difficult to detect at an early, more treatable stage; therefore, the current lack of salvage treatment for women, who experience a recurrence, results in a 5-year survival rate of less than 30%.

About GRN-300

GRN-300 (previously ARN3261) is an orally bioavailable first-in-class novel, small molecule, dual inhibitor of the salt-inducible kinases 2 and 3 (SIK2, SIK3). This agent has the potential to overcome chemoresistance based on its mechanism of action (MOA) and synergistic effects with standard of care including paclitaxel, carboplatin, PARP inhibitors, and immune checkpoint inhibitors (ICIs). SIK2 is overexpressed in 30% of ovarian cancer specimens suggesting a multifunctional role of SIK2/3 in tumorigenesis. SIK2 and SIK3 are known to play [an] oncogenic role in other tumor types, including prostate cancer, breast cancer, diffuse large B-cell lymphoma, and melanoma. Higher levels of expression of SIK2 have been shown to be significantly correlated with poor progression-free survival in patients with high-grade serous ovarian cancers. GRN-300 attenuated tumor growth & inhibition in several preclinical xenograft ovarian cancer models as a single agent and in combination with paclitaxel. The clinical activity of GRN-300 as a single agent and in combination with paclitaxel is currently being evaluated in a Phase 1a/1b Clinical Study in subjects with Recurrent Ovarian, Primary Peritoneal, and Fallopian Tube Cancers (ClinicalTrials.gov Identifier: NCT04711161).

Entry into a Material Definitive Agreement

On June 24, 2022 (the "Closing Date"), G1 Therapeutics, Inc. (the "Company"), as borrower, and Hercules Capital, Inc. and certain of its affiliates (collectively, the "Lender") reported that entered into a third amendment (the "Third Amendment") to amend that certain loan and security agreement, dated as of May 29, 2020, as amended by the First Amendment to Loan and Security Agreement, dated as of March 31, 2021 (the "First Amendment") and the Second Amendment to Loan and Security Agreement, dated as of November 1, 2021 (the "Second Amendment"); the loan and security agreement, as amended by the First Amendment, the Second Amendment and the Third Amendment, the "Loan and Security Agreement"), under which the Lender has agreed to lend the Company up to $150.0 million, to be made available in a series of tranches, subject to specified conditions (Filing, 8-K, G1 Therapeutics, JUN 24, 2022, View Source [SID1234616242]). The total loan amount outstanding is $75.0 million. The Third Amendment extends the time for drawing the Tranche 1D Advance (as defined in the Loan and Security Agreement) of up to $25.0 million from September 15, 2022 to December 31, 2022.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The Third Amendment adds a minimum cash covenant whereby the Company must maintain unrestricted cash equal to at least 50% of the outstanding debt, and such percentage shall decrease upon the Company achieving specified net product revenue of COSELA. The Third Amendment further provides for a minimum revenue covenant that, beginning August 15, 2022, with the reporting of the financial results for the second fiscal quarter ended June 30, 2022, and tested monthly, the Company must have achieved net product revenue of COSELA of at least 80% of the amounts projected in the Company’s forecast. Testing of the minimum revenue covenant shall be waived at any time in which either (a) the Company’s market capitalization exceeds $750.0 million and the Company maintains unrestricted cash equal to at least 50% of the total amounts funded, or (b) the Company maintains unrestricted cash equal to at least 100% of the total amounts funded.

The foregoing description is only a summary of certain provisions of the Third Amendment and is qualified in its entirety by reference to the Third Amendment, a copy of which will be filed as an exhibit to the Company’s Quarterly Report on Form 10-Q for the quarter ending June 30, 2022 and will be incorporated by reference herein.

U.S. FDA Approves Bristol Myers Squibb’s CAR T Cell Therapy Breyanzi® for Relapsed or Refractory Large B-cell Lymphoma After One Prior Therapy

On June 24, 2022 Bristol Myers Squibb (NYSE: BMY) reported that the U.S. Food and Drug Administration (FDA) has approved Breyanzi (lisocabtagene maraleucel), a CD19-directed chimeric antigen receptor (CAR) T cell therapy, for the treatment of adult patients with large B-cell lymphoma (LBCL), including diffuse large B-cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma), high-grade B-cell lymphoma, primary mediastinal large B-cell lymphoma, and follicular lymphoma grade 3B, who have (Press release, Bristol-Myers Squibb, JUN 24, 2022, View Source [SID1234616236]):

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Refractory disease to first-line chemoimmunotherapy or relapse within 12 months of first-line chemoimmunotherapy; or
Refractory disease to first-line chemoimmunotherapy or relapse after first-line chemoimmunotherapy and are not eligible for hematopoietic stem cell transplant (HSCT) due to comorbidities or age.
With these two new indications, Breyanzi now has the broadest patient eligibility of any CAR T cell therapy in relapsed or refractory LBCL. Breyanzi is not indicated for the treatment of patients with primary central nervous system lymphoma. Please see the Important Safety Information section below, including Boxed WARNINGS for Breyanzi regarding cytokine release syndrome (CRS) and neurologic toxicities.

Breyanzi has demonstrated clinically meaningful and statistically significant improvements in event-free survival (EFS), complete responses (CR) and progression-free survival (PFS) compared to standard therapy in patients with LBCL that is primary refractory or relapsed within 12 months after first-line therapy. An improvement in EFS represents an increase in the length of time in which patients are alive and without disease progression or in need of further treatment. Breyanzi, a differentiated CAR T cell therapy, is made from a patient’s own T cells, which are collected and genetically reengineered to become CAR T cells that are thendelivered via infusion as a one-time treatment. Breyanzi can be administered in the inpatient or outpatient setting at a certified treatment center.

"As part of our commitment to developing innovative cancer treatments for patients with critical unmet need, Breyanzi offers a potentially curative option for more patients," said Ester Banque, senior vice president & general manager, U.S. Hematology, Bristol Myers Squibb. "Based on the demonstrated clinical benefit, this approval of Breyanzi underscores the significant advances we are making to deliver on the promise of cell therapy."

LBCL is a difficult-to-treat and aggressive blood cancer, and up to 40% of patients have disease that is refractory to or relapses after initial therapy. Historically, the only potential cure for these patients is the current standard of care consisting of intensive hospital-based salvage immunochemotherapy followed by high-dose chemotherapy and HSCT in those whose disease responds to the salvage therapy. However, half of patients are not considered candidates for a stem cell transplant due to age and/or comorbidities, and only an estimated 25% of those who are candidates are able to receive a stem cell transplant and experience long-term clinical benefit. For patients who are not considered candidates for stem cell transplant, treatment options are limited. If left untreated, relapsed or refractory LBCL has a life expectancy of just three to four months.

"Breyanzi represents a remarkable advance over a nearly 30-year standard of care, providing significantly improved efficacy with a well-established safety profile," said Manali Kamdar, M.D., lead investigator of the TRANSFORM study and Associate Professor, Clinical Director of Lymphoma Services, Division of Hematology, Hematologic Malignancies and Stem Cell Transplantation, University of Colorado Cancer Center. "This important milestone reinforces the benefit of offering a CAR T cell therapy option to patients earlier in their treatment journey and it’s critical that we begin the work to implement this therapy into standard practice as a second-line treatment in order to help improve outcomes for more patients."

"Patients with large B-cell lymphoma whose disease does not respond to or relapses after first-line therapy often face lengthy and intensive cycles of chemotherapy with the goal of proceeding to stem cell transplant," said Lee Greenberger, Ph.D., Chief Scientific Officer of the Leukemia & Lymphoma Society (LLS). "As one of the earliest supporters of CAR T since the 1990’s, LLS is excited to see the FDA approval of a CD19 CAR T cell therapy that has moved from later lines of therapy to a second-line option, which offers patients with relapsed or refractory large B-cell lymphoma the potential for long-term remission and the hope of a cure."

Breyanzi is the only CAR T cell therapy that has been evaluated in a broad second-line patient population for LBCL in two distinct company-sponsored studies, including in patients whose disease relapsed within or later than 12 months following first-line treatment and regardless of transplant candidacy.

The approval of the expanded indications for Breyanzi is based on results from the pivotal Phase 3 TRANSFORM study in which adults with LBCL that was primary refractory or relapsed within 12 months of front-line therapy were randomized to receive Breyanzi or standard therapy consisting of salvage immunochemotherapy, and if responsive, high-dose chemotherapy and HSCT. The trial included patients with diverse histologic subtypes and high-risk features, and offered a patient-centric design, allowing for bridging immunochemotherapy in the Breyanzi arm for disease control, which reflects real-world clinical practice and allowed for inclusion of patients with more aggressive and fast-progressing disease. Due to the high rate of patients whose disease does not respond to salvage immunochemotherapy, the trial also allowed for crossover from the standard therapy arm to the Breyanzi armif patients did not derive a response after three cycles of salvage chemotherapy or had disease progression at any time.

Results from the TRANSFORM study showed, Breyanzi (n=92)more than quadrupled median EFS compared to standard therapy (n=92) (10.1 months vs. 2.3 months [HR: 0.34; 95% CI (0.22-0.52) p<0.0001]). The majority of patients achieved a CR with Breyanzi compared to less than half with standard therapy (66% [95% CI: 56% – 76%] vs. 39% [95% CI: 29% – 50%]; p<0.0001), with median duration of CR not reached in the Breyanzi arm (95% CI: 7.9-NR). Results also showed Breyanzi more than doubled PFS versus standard therapy (median PFS: 14.8 months vs. 5.7 months [HR: 0.41; 95% CI: 0.25-0.66; p=0.0001]). In the study, nearly all patients (97%) in the Breyanzi arm received treatment versus less than half (47%) of patients who completed high-dose chemotherapy and autologous HSCT in the standard therapy arm.

The efficacy of Breyanzi in the second-line setting was also based on data from the Phase 2 PILOT study, in which 61 adults with primary refractory or relapsed LBCL who were not considered candidates for stem cell transplant were treated with Breyanzi. The PILOT study enrolled a broad patient population based on age, performance status and/or organ function and comorbidities, and regardless of time to relapse following first-line treatment. Breyanzi showed deep and durable responses, with an overall response rate of 80%, the study’s primary endpoint, and a CR rate of 54%, with median time to CR of one month (range: 0.8 – 6.9 months). Median duration of response was 11.2 months, with the median duration of response not reached for those patients who achieved a CR.

Breyanzi has a well-established safety profile and based on results from the TRANSFORM and PILOT studies, occurrences of CRS and neurologic events were generally low grade and mostly resolved quickly with standard protocols, and without the use of prophylactic steroids. Any-grade CRS was reported in less than half of patients (45%; 68/150), with Grade 3 CRS reported in 1.3% of patients. Any-grade neurologic events were reported in 27% (41/150) of patients treated with Breyanzi, with Grade 3 neurologic events reported in 7% of patients. Median time to onset of CRS was four days (range: 1 to 63 days) and median duration of CRS was four days (range: 1 to 16 days). The median time to onset of neurologic events was eight days (range: 1 to 63 days). The median duration of neurologic toxicities was six days (range: 1 to 119 days). The delayed onset of CRS and neurologic events allowed for the option of outpatient treatment and management of patients. In addition, the clinical profile of Breyanzi supported its use in a broad range of relapsed or refractory LBCL patients.

Breyanzi is broadly covered by commercial and government insurance programs in the U.S.

About Breyanzi

Breyanzi is a CD-19 directed chimeric antigen receptor (CAR) T cell therapy, administered as a defined composition to reduce variability of the CD8 and CD4 component dose. Breyanzi has a 4-1BB costimulatory domain which enhances the expansion and persistence of the CAR T cells. Breyanzi was previously approved by the U.S. Food and Drug Administration for the treatment of adult patients with relapsed or refractory LBCL after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma), high-grade B-cell lymphoma, primary mediastinal large B-cell lymphoma, and follicular lymphoma grade 3B. Breyanzi is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the BREYANZI REMS.

Breyanzi is also approved in Europe, Switzerland, Canada and Japan for relapsed and refractory LBCL after two or more lines of systemic therapy. Bristol Myers Squibb’s clinical development program for Breyanzi includes clinical studies in earlier lines of treatment for patients with relapsed or refractory LBCL and other types of lymphoma. For more information, visit clinicaltrials.gov.

About TRANSFORM

TRANSFORM (NCT03575351) is a pivotal, global, randomized, multicenter Phase 3 trial evaluating Breyanzi compared to current standard therapy regimens (platinum-based salvage chemotherapy followed by high-dose chemotherapy and HSCT in patients responding to salvage chemotherapy) in patients with large B-cell lymphoma that was primary refractory or relapsed within 12 months after CD20-antibody and anthracycline containing first-line therapy. Patients were randomized to receive Breyanzi or standard of care salvage therapy, including rituximab plus dexamethasone, high-dose cytarabine, and cisplatin (R-DHAP), rituximab plus ifosfamide, carboplatin and etoposide (R-ICE), or rituximab plus gemcitabine, dexamethasone and cisplatin (R-GDP) per the investigators’ choice before proceeding to high-dose chemotherapy (HDCT) and hematopoietic stem cell transplant (HSCT). The primary endpoint of the study was event-free survival, defined as time from randomization to death from any cause, progressive disease, failure to achieve complete response or partial response, or start of new antineoplastic therapy due to efficacy concerns, whichever occurs first. Complete response rate was a key secondary endpoint. Other efficacy endpoints included progression-free survival, overall survival, overall response rate and duration of response.

About PILOT

PILOT (NCT03483103) is a multicenter Phase 2 trial evaluating Breyanzi as a second-line therapy in adults with relapsed or refractory large B-cell lymphoma after front-line therapy who are not considered candidates for hematopoietic stem cell transplant (HSCT). All enrolled patients have relapsed or refractory large B-cell lymphoma after treatment with a single line of chemoimmunotherapy containing an anthracycline and a CD20-targeted agent. The primary endpoint of the study is overall response rate. Other efficacy endpoints include complete response rate, duration of response, progression-free survival, event-free survival and overall survival.

Important Safety Information

BOXED WARNING: CYTOKINE RELEASE SYNDROME and NEUROLOGIC TOXICITIES

Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients receiving BREYANZI. Do not administer BREYANZI to patients with active infection or inflammatory disorders. Treat severe or life-threatening CRS with tocilizumab with or without corticosteroids.
Neurologic toxicities, including fatal or life-threatening reactions, occurred in patients receiving BREYANZI, including concurrently with CRS, after CRS resolution or in the absence of CRS. Monitor for neurologic events after treatment with BREYANZI. Provide supportive care and/or corticosteroids as needed.
BREYANZI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the BREYANZI REMS.
Cytokine Release Syndrome

Cytokine release syndrome (CRS), including fatal or life-threatening reactions, occurred following treatment with BREYANZI. Among patients receiving BREYANZI for LBCL (N=418), CRS occur in 46% (190/418) of patients, including ≥ Grade 3 CRS (Lee grading system) in 3.1% of patients.

In patients receiving BREYANZI after two or more lines of therapy for LBCL, CRS occurred in 46% (122/268), including ≥ Grade 3 CRS in 4.1% of patients. One patient had fatal CRS and 2 had ongoing CRS at time of death. The median time to onset was 5 days (range: 1 to 15 days). CRS resolved in 98% with a median duration of 5 days (range: 1 to 17 days).

In patients receiving BREYANZI after one line of therapy for LBCL, CRS occurred in 45% (68/150), including Grade 3 CRS in 1.3% of patients. The median time to onset was 4 days (range: 1 to 63 days). CRS resolved in all patients with a median duration of 4 days (range: 1 to 16 days).

The most common manifestations of CRS (≥10%) included fever (94%), hypotension (42%), tachycardia (28%), chills (23%), hypoxia (16%), and headache (12%).

Serious events that may be associated with CRS include cardiac arrhythmias (including atrial fibrillation and ventricular tachycardia), cardiac arrest, cardiac failure, diffuse alveolar damage, renal insufficiency, capillary leak syndrome, hypotension, hypoxia, and hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS).

Ensure that 2 doses of tocilizumab are available prior to infusion of BREYANZI.

Of the 418 patients who received BREYANZI for LBCL, 23% received tocilizumab and/or a corticosteroid for CRS, including 10% who received tocilizumab only and 2.2% who received corticosteroids only.

Neurologic Toxicities

Neurologic toxicities that were fatal or life-threatening, including immune effector cell-associated neurotoxicity syndrome (ICANS), occurred following treatment with BREYANZI. Serious events including cerebral edema and seizures occurred with BREYANZI. Fatal and serious cases of leukoencephalopathy, some attributable to fludarabine, also occurred.

In patients receiving BREYANZI after two or more lines of therapy for LBCL, CAR T cell-associated neurologic toxicities occurred in 35% (95/268), including ≥ Grade 3 in 12% of patients. Three patients had fatal neurologic toxicity and 7 had ongoing neurologic toxicity at time of death. The median time to onset of neurotoxicity was 8 days (range: 1 to 46 days). Neurologic toxicities resolved in 85% with a median duration of 12 days (range: 1 to 87 days).

In patients receiving BREYANZI after one line of therapy for LBCL, CAR T cell-associated neurologic toxicities occurred in 27% (41/150) of patients, including Grade 3 cases in 7% of patients. The median time to onset of neurologic toxicities was 8 days (range: 1 to 63 days). The median duration of neurologic toxicity was 6 days (range: 1 to 119 days).

In all patients combined receiving BREYANZI for LBCL, neurologic toxicities occurred in 33% (136/418), including ≥ Grade 3 cases in 10% of patients. The median time to onset was 8 days (range: 1 to 63), with 87% of cases developing by 16 days. Neurologic toxicities resolved in 85% of patients with a median duration of 11 days (range: 1 to 119 days). Of patients developing neurotoxicity, 77% (105/136) also developed CRS.

The most common neurologic toxicities (≥ 5%) included encephalopathy (20%), tremor (13%), aphasia (8%), headache (6%), dizziness (6%), and delirium (5%).

CRS and Neurologic Toxicities Monitoring

Monitor patients daily for at least 7 days following BREYANZI infusion at a REMS-certified healthcare facility for signs and symptoms of CRS and neurologic toxicities and assess for other causes of neurological symptoms. Monitor patients for signs and symptoms of CRS and neurologic toxicities for at least 4 weeks after infusion and treat promptly. At the first sign of CRS, institute treatment with supportive care, tocilizumab, or tocilizumab and corticosteroids as indicated. Manage neurologic toxicity with supportive care and/or corticosteroid as needed. Counsel patients to seek immediate medical attention should signs or symptoms of CRS or neurologic toxicity occur at any time.

BREYANZI REMS

Because of the risk of CRS and neurologic toxicities, BREYANZI is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the BREYANZI REMS. The required components of the BREYANZI REMS are:

Healthcare facilities that dispense and administer BREYANZI must be enrolled and comply with the REMS requirements.
Certified healthcare facilities must have on-site, immediate access to tocilizumab.
Ensure that a minimum of 2 doses of tocilizumab are available for each patient for infusion within 2 hours after BREYANZI infusion, if needed for treatment of CRS.
Certified healthcare facilities must ensure that healthcare providers who prescribe, dispense, or administer BREYANZI are trained on the management of CRS and neurologic toxicities.
Further information is available at www.BreyanziREMS.com, or contact Bristol-Myers Squibb at 1-888-423-5436.

Hypersensitivity Reactions

Allergic reactions may occur with the infusion of BREYANZI. Serious hypersensitivity reactions, including anaphylaxis, may be due to dimethyl sulfoxide (DMSO).

Serious Infections

Severe infections, including life-threatening or fatal infections, have occurred in patients after BREYANZI infusion.

In patients receiving BREYANZI for LBCL, infections of any grade occurred in 36% with Grade 3 or higher infections occurring in 12% of all patients. Grade 3 or higher infections with an unspecified pathogen occurred in 7%, bacterial infections occurred in 4.3%, viral infections in 1.9% and fungal infections in 0.5%.

Febrile neutropenia developed after BREYANZI infusion in 8% of patients with LBCL. Febrile neutropenia may be concurrent with CRS. In the event of febrile neutropenia, evaluate for infection and manage with broad spectrum antibiotics, fluids, and other supportive care as medically indicated.

Monitor patients for signs and symptoms of infection before and after BREYANZI administration and treat appropriately. Administer prophylactic antimicrobials according to standard institutional guidelines.

Avoid administration of BREYANZI in patients with clinically significant active systemic infections.

Viral reactivation: Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, can occur in patients treated with drugs directed against B cells.

In patients who received BREYANZI for LBCL, 15 of the 16 patients with a prior history of HBV were treated with concurrent antiviral suppressive therapy. Perform screening for HBV, HCV, and HIV in accordance with clinical guidelines before collection of cells for manufacturing. In patients with prior history of HBV, consider concurrent antiviral suppressive therapy to prevent HBV reactivation per standard guidelines.

Prolonged Cytopenias

Patients may exhibit cytopenias not resolved for several weeks following lymphodepleting chemotherapy and BREYANZI infusion.

Grade 3 or higher cytopenias persisted at Day 29 following BREYANZI infusion in 36% of patients with LBCL, and included thrombocytopenia in 28%, neutropenia in 21%, and anemia in 6%.

Monitor complete blood counts prior to and after BREYANZI administration.

Hypogammaglobulinemia

B-cell aplasia and hypogammaglobulinemia can occur in patients receiving treatment with BREYANZI.

In patients receiving BREYANZI for LBCL, hypogammaglobulinemia was reported as an adverse reaction in 11% of patients. Hypogammaglobulinemia, either as an adverse reaction or laboratory IgG level below 500 mg/dL after infusion, was reported in 28% of patients.

Monitor immunoglobulin levels after treatment with BREYANZI and manage using infection precautions, antibiotic prophylaxis, and immunoglobulin replacement as clinically indicated.

Live vaccines: The safety of immunization with live viral vaccines during or following BREYANZI treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during BREYANZI treatment, and until immune recovery following treatment with BREYANZI.

Secondary Malignancies

Patients treated with BREYANZI may develop secondary malignancies. Monitor lifelong for secondary malignancies. In the event that a secondary malignancy occurs, contact Bristol-Myers Squibb at 1-888-805-4555 for reporting and to obtain instructions on collection of patient samples for testing.

Effects on Ability to Drive and Use Machines

Due to the potential for neurologic events, including altered mental status or seizures, patients receiving BREYANZI are at risk for developing altered or decreased consciousness or impaired coordination in the 8 weeks following BREYANZI administration. Advise patients to refrain from driving and engaging in hazardous occupations or activities, such as operating heavy or potentially dangerous machinery, for at least 8 weeks.

Adverse Reactions

The most common nonlaboratory adverse reactions (incidence ≥ 30%) are fever, CRS, fatigue, musculoskeletal pain, and nausea.

The most common Grade 3-4 laboratory abnormalities (≥ 30%) include lymphocyte count decrease, neutrophil count decrease, platelet count decrease, hemoglobin decrease.

Please see full Prescribing Information, including Boxed WARNINGS and Medication Guide.

Bristol Myers Squibb: Creating a Better Future for People with Cancer

Bristol Myers Squibb is inspired by a single vision—transforming patients’ lives through science. The goal of the company’s cancer research is to deliver medicines that offer each patient a better, healthier life and to make cure a possibility. Building on a legacy across a broad range of cancers that have changed survival expectations for many, Bristol Myers Squibb researchers are exploring new frontiers in personalized medicine, and through innovative digital platforms, are turning data into insights that sharpen their focus. Deep scientific expertise, cutting-edge capabilities and discovery platforms enable the company to look at cancer from every angle. Cancer can have a relentless grasp on many parts of a patient’s life, and Bristol Myers Squibb is committed to taking actions to address all aspects of care, from diagnosis to survivorship. Because as a leader in cancer care, Bristol Myers Squibb is working to empower all people with cancer to have a better future.

Learn more about the science behind cell therapy and ongoing research at Bristol Myers Squibb here.

European Commission Approves KEYTRUDA® (pembrolizumab) as Adjuvant Treatment for Adult and Adolescent Patients (?12 Years of Age) With Stage IIB or IIC Melanoma Following Complete Resection

On June 24, 2022 Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported that the European Commission (EC) has approved KEYTRUDA, Merck’s anti-PD-1 therapy, as monotherapy for the adjuvant treatment of adults and adolescents aged 12 years and older with stage IIB or IIC melanoma and who have undergone complete resection (Press release, Merck & Co, JUN 24, 2022, View Source [SID1234616233]). Additionally, the EC approved expanding the indications for KEYTRUDA in advanced (unresectable or metastatic) melanoma and stage III melanoma (as adjuvant treatment following complete resection) to include adolescent patients aged 12 years and older.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The approval of KEYTRUDA for the adjuvant treatment of patients with resected stage IIB or IIC melanoma was based on results from the Phase 3 KEYNOTE-716 trial, in which KEYTRUDA significantly prolonged recurrence-free survival (RFS), reducing the risk of disease recurrence or death by 39% (HR=0.61 [95% CI, 0.45-0.82]; p=0.00046) compared to placebo in this patient population at a median follow-up of 20.5 months. KEYTRUDA in this adjuvant setting also significantly prolonged distant metastasis-free survival (DMFS), reducing the risk of distant metastasis by 36% (HR=0.64 [95% CI, 0.47-0.88]; p=0.00292) compared to placebo in this patient population at a median follow-up of 26.9 months.

"When melanoma recurs, patients often have a significantly worse long-term prognosis, especially if the cancer returns or spreads to distant sites," said Dr. Alexander Eggermont, chief scientific officer, Princess Máxima Center for Pediatric Oncology, the Netherlands. "This approval further reinforces the important role of adjuvant therapy for patients 12 years and older with completely resected stage IIB and IIC melanoma who now have a treatment option that has demonstrated the potential to significantly reduce the risk of their cancer returning."

The safety of KEYTRUDA monotherapy has been evaluated in 7,631 patients across tumor types. The incidences of immune-related adverse reactions were 36.1% for all Grades and 8.9% for Grades 3-5 for KEYTRUDA monotherapy in the adjuvant setting (n=1,480). No new immune-related adverse reactions were identified for KEYTRUDA monotherapy in the adjuvant setting.

"Melanoma continues to be a public health burden in Europe, claiming more than 26,000 lives in 2020, with rates rising annually," said Dr. Scot Ebbinghaus, vice president, global clinical development, Merck Research Laboratories. "KEYTRUDA has become the first anti-PD-1 adjuvant treatment option approved in the EU for patients 12 years and older across stage IIB, IIC and III melanoma following complete resection, based on data that show the potential of KEYTRUDA to help reduce the risk of recurrence, including as distant metastases, in these patients. This approval furthers our commitment to finding new effective options for even more patients with melanoma."

This approval allows marketing of KEYTRUDA for this indication in all 27 European Union (EU) member states plus Iceland, Lichtenstein, Norway and Northern Ireland. In the EU, KEYTRUDA was previously approved for the treatment of adult patients with advanced (unresectable or metastatic) melanoma and for the adjuvant treatment of adult patients with stage III melanoma and lymph node involvement who have undergone complete resection.

About KEYNOTE-716
The approval was based on data from KEYNOTE-716 (ClinicalTrials.gov, NCT03553836), a randomized, double-blind Phase 3 trial that enrolled 976 adult and pediatric patients (12 years and older) with resected stage IIB or IIC melanoma. Following complete surgical resection, patients were randomized to KEYTRUDA (200 mg for adult patients and 2 mg/kg for pediatric patients [up to 200 mg]) or placebo every three weeks for approximately one year until disease recurrence or unacceptable toxicity. The primary endpoint is RFS, and secondary endpoints include DMFS and overall survival.

About Merck’s research in melanoma
Melanoma, the most serious form of skin cancer, is characterized by the uncontrolled growth of pigment-producing cells. The rates of melanoma have been rising over the past few decades, with nearly 325,000 new cases of melanoma diagnosed worldwide in 2020, and melanoma is the leading cause of skin cancer deaths, with more than 57,000 deaths from the disease worldwide in 2020. In Europe, it is estimated there were more than 150,000 new cases of melanoma diagnosed and more than 26,000 deaths from the disease in 2020.

The recurrence rates for resected melanoma are estimated to be 32-46% for patients with stage IIB and IIC disease and 39-74% for patients with stage III disease. The five-year survival rates are estimated to be 87% for stage IIB, 82% for stage IIC, 93% for stage IIIA, 83% for stage IIIB, 69% for stage IIIC and 32% for stage IIID.

Merck is committed to delivering meaningful advances for patients with melanoma with KEYTRUDA and to continuing research in skin cancers through a broad clinical development program across investigational and approved medicines. KEYTRUDA has been established as an important treatment option for the adjuvant treatment of patients with resected stage III melanoma and is approved in over 90 countries based on the results from EORTC1325/KEYNOTE-054. KEYTRUDA is also approved worldwide for the treatment of patients with unresectable or metastatic melanoma.

About Merck’s early-stage cancer clinical program
Finding cancer at an earlier stage may give patients a greater chance of long-term survival. Many cancers are considered most treatable and potentially curable in their earliest stage of disease. Building on the strong understanding of the role of KEYTRUDA in later-stage cancers, Merck is studying KEYTRUDA in earlier disease states, with approximately 20 ongoing registrational studies across multiple types of cancer.

About KEYTRUDA (pembrolizumab) injection, 100 mg
KEYTRUDA is an anti-programmed death receptor-1 (PD-1) therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 1,700 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of adult and pediatric (12 years and older) patients with stage IIB, IIC, or III melanoma following complete resection.

See additional selected KEYTRUDA indications in the U.S. after the Selected Important Safety Information.

Selected Important Safety Information for KEYTRUDA
Severe and Fatal Immune-Mediated Adverse Reactions
KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the PD-1 or the PD-L1, blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of anti–PD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. For patients with TNBC treated with KEYTRUDA in the neoadjuvant setting, monitor blood cortisol at baseline, prior to surgery, and as clinically indicated. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis
KEYTRUDA as a Single Agent
KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT ≥3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT ≥3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT ≥3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies
Adrenal Insufficiency
KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis
KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders
KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis
Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions
KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with anti–PD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions
The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other anti–PD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis, rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after anti–PD-1/PD-L1 treatments. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between anti–PD-1/PD-L1 treatment and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using anti–PD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma
In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an anti–PD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-054, when KEYTRUDA was administered as a single agent to patients with stage III melanoma, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%). In KEYNOTE-716, when KEYTRUDA was administered as a single agent to patients with stage IIB or IIC melanoma, adverse reactions occurring in patients with stage IIB or IIC melanoma were similar to those occurring in 1011 patients with stage III melanoma from KEYNOTE-054.

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-204, KEYTRUDA was discontinued due to adverse reactions in 14% of 148 patients with cHL. Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA; those ≥1% were pneumonitis, pneumonia, pyrexia, myocarditis, acute kidney injury, febrile neutropenia, and sepsis. Three patients died from causes other than disease progression: 2 from complications after allogeneic HSCT and 1 from unknown cause. The most common adverse reactions (≥20%) were upper respiratory tract infection (41%), musculoskeletal pain (32%), diarrhea (22%), and pyrexia, fatigue, rash, and cough (20% each).

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% were pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression: 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or mUC. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or mUC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-811, when KEYTRUDA was administered in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 6% of 217 patients with locally advanced unresectable or metastatic HER2+ gastric or GEJ adenocarcinoma. The most common adverse reaction resulting in permanent discontinuation was pneumonitis (1.4%). In the KEYTRUDA arm versus placebo, there was a difference of ≥5% incidence between patients treated with KEYTRUDA versus standard of care for diarrhea (53% vs 44%) and nausea (49% vs 44%).

The most common adverse reactions (reported in ≥20%) in patients receiving KEYTRUDA in combination with chemotherapy were fatigue/asthenia, nausea, constipation, diarrhea, decreased appetite, rash, vomiting, cough, dyspnea, pyrexia, alopecia, peripheral neuropathy, mucosal inflammation, stomatitis, headache, weight loss, abdominal pain, arthralgia, myalgia, and insomnia.

In KEYNOTE-590, when KEYTRUDA was administered with cisplatin and fluorouracil to patients with metastatic or locally advanced esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma who were not candidates for surgical resection or definitive chemoradiation, KEYTRUDA was discontinued due to adverse reactions in 15% of 370 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA (≥1%) were pneumonitis (1.6%), acute kidney injury (1.1%), and pneumonia (1.1%). The most common adverse reactions (≥20%) with KEYTRUDA in combination with chemotherapy were nausea (67%), fatigue (57%), decreased appetite (44%), constipation (40%), diarrhea (36%), vomiting (34%), stomatitis (27%), and weight loss (24%).

Adverse reactions occurring in patients with esophageal cancer who received KEYTRUDA as a monotherapy were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-826, when KEYTRUDA was administered in combination with paclitaxel and cisplatin or paclitaxel and carboplatin, with or without bevacizumab (n=307), to patients with persistent, recurrent, or first-line metastatic cervical cancer regardless of tumor PD-L1 expression who had not been treated with chemotherapy except when used concurrently as a radio-sensitizing agent, fatal adverse reactions occurred in 4.6% of patients, including 3 cases of hemorrhage, 2 cases each of sepsis and due to unknown causes, and 1 case each of acute myocardial infarction, autoimmune encephalitis, cardiac arrest, cerebrovascular accident, femur fracture with perioperative pulmonary embolus, intestinal perforation, and pelvic infection. Serious adverse reactions occurred in 50% of patients receiving KEYTRUDA in combination with chemotherapy with or without bevacizumab; those ≥3% were febrile neutropenia (6.8%), urinary tract infection (5.2%), anemia (4.6%), and acute kidney injury and sepsis (3.3% each).

KEYTRUDA was discontinued in 15% of patients due to adverse reactions. The most common adverse reaction resulting in permanent discontinuation (≥1%) was colitis (1%).

For patients treated with KEYTRUDA, chemotherapy, and bevacizumab (n=196), the most common adverse reactions (≥20%) were peripheral neuropathy (62%), alopecia (58%), anemia (55%), fatigue/asthenia (53%), nausea and neutropenia (41% each), diarrhea (39%), hypertension and thrombocytopenia (35% each), constipation and arthralgia (31% each), vomiting (30%), urinary tract infection (27%), rash (26%), leukopenia (24%), hypothyroidism (22%), and decreased appetite (21%).

For patients treated with KEYTRUDA in combination with chemotherapy with or without bevacizumab, the most common adverse reactions (≥20%) were peripheral neuropathy (58%), alopecia (56%), fatigue (47%), nausea (40%), diarrhea (36%), constipation (28%), arthralgia (27%), vomiting (26%), hypertension and urinary tract infection (24% each), and rash (22%).

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with previously treated recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with HCC were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

In KEYNOTE-564, when KEYTRUDA was administered as a single agent for the adjuvant treatment of renal cell carcinoma, serious adverse reactions occurred in 20% of patients receiving KEYTRUDA; the serious adverse reactions (≥1%) were acute kidney injury, adrenal insufficiency, pneumonia, colitis, and diabetic ketoacidosis (1% each). Fatal adverse reactions occurred in 0.2% including 1 case of pneumonia. Discontinuation of KEYTRUDA due to adverse reactions occurred in 21% of 488 patients; the most common (≥1%) were increased ALT (1.6%), colitis (1%), and adrenal insufficiency (1%). The most common adverse reactions (≥20%) were musculoskeletal pain (41%), fatigue (40%), rash (30%), diarrhea (27%), pruritus (23%), and hypothyroidism (21%).

Adverse reactions occurring in patients with MSI-H or dMMR endometrial carcinoma who received KEYTRUDA as a single agent were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a single agent.

Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

Adverse reactions occurring in patients with recurrent or metastatic cSCC or locally advanced cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-522, when KEYTRUDA was administered with neoadjuvant chemotherapy (carboplatin and paclitaxel followed by doxorubicin or epirubicin and cyclophosphamide) followed by surgery and continued adjuvant treatment with KEYTRUDA as a single agent (n=778) to patients with newly diagnosed, previously untreated, high-risk early-stage TNBC, fatal adverse reactions occurred in 0.9% of patients, including 1 each of adrenal crisis, autoimmune encephalitis, hepatitis, pneumonia, pneumonitis, pulmonary embolism, and sepsis in association with multiple organ dysfunction syndrome and myocardial infarction. Serious adverse reactions occurred in 44% of patients receiving KEYTRUDA; those ≥2% were febrile neutropenia (15%), pyrexia (3.7%), anemia (2.6%), and neutropenia (2.2%). KEYTRUDA was discontinued in 20% of patients due to adverse reactions. The most common reactions (≥1%) resulting in permanent discontinuation were increased ALT (2.7%), increased AST (1.5%), and rash (1%). The most common adverse reactions (≥20%) in patients receiving KEYTRUDA were fatigue (70%), nausea (67%), alopecia (61%), rash (52%), constipation (42%), diarrhea and peripheral neuropathy (41% each), stomatitis (34%), vomiting (31%), headache (30%), arthralgia (29%), pyrexia (28%), cough (26%), abdominal pain (24%), decreased appetite (23%), insomnia (21%), and myalgia (20%).

In KEYNOTE-355, when KEYTRUDA and chemotherapy (paclitaxel, paclitaxel protein-bound, or gemcitabine and carboplatin) were administered to patients with locally recurrent unresectable or metastatic TNBC who had not been previously treated with chemotherapy in the metastatic setting (n=596), fatal adverse reactions occurred in 2.5% of patients, including cardio-respiratory arrest (0.7%) and septic shock (0.3%). Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA in combination with chemotherapy; the serious reactions in ≥2% were pneumonia (2.9%), anemia (2.2%), and thrombocytopenia (2%). KEYTRUDA was discontinued in 11% of patients due to adverse reactions. The most common reactions resulting in permanent discontinuation (≥1%) were increased ALT (2.2%), increased AST (1.5%), and pneumonitis (1.2%). The most common adverse reactions (≥20%) in patients receiving KEYTRUDA in combination with chemotherapy were fatigue (48%), nausea (44%), alopecia (34%), diarrhea and constipation (28% each), vomiting and rash (26% each), cough (23%), decreased appetite (21%), and headache (20%).

Lactation
Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use
In KEYNOTE-051, 161 pediatric patients (62 pediatric patients aged 6 months to younger than 12 years and 99 pediatric patients aged 12 years to 17 years) were administered KEYTRUDA 2 mg/kg every 3 weeks. The median duration of exposure was 2.1 months (range: 1 day to 24 months).

Adverse reactions that occurred at a ≥10% higher rate in pediatric patients when compared to adults were pyrexia (33%), vomiting (30%), leukopenia (30%), upper respiratory tract infection (29%), neutropenia (26%), headache (25%), and Grade 3 anemia (17%).

Additional Selected KEYTRUDA Indications in the U.S.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is:

stage III where patients are not candidates for surgical resection or definitive chemoradiation, or
metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [Combined Positive Score (CPS) ≥1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy.

KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC):

who are not eligible for any platinum-containing chemotherapy, or
who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
Non-muscle Invasive Bladder Cancer
KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer
KEYTRUDA, in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

in combination with platinum- and fluoropyrimidine-based chemotherapy, or
as a single agent after one or more prior lines of systemic therapy for patients with tumors of squamous cell histology that express PD-L1 (CPS ≥10) as determined by an FDA-approved test.
Cervical Cancer
KEYTRUDA, in combination with chemotherapy, with or without bevacizumab, is indicated for the treatment of patients with persistent, recurrent, or metastatic cervical cancer whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test.

Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).

KEYTRUDA is indicated for the adjuvant treatment of patients with RCC at intermediate-high or high risk of recurrence following nephrectomy, or following nephrectomy and resection of metastatic lesions.

Endometrial Carcinoma
KEYTRUDA, as a single agent, is indicated for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR, as determined by an FDA-approved test, who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.

Tumor Mutational Burden-High Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) or locally advanced cSCC that is not curable by surgery or radiation.

Triple-Negative Breast Cancer
KEYTRUDA is indicated for the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC) in combination with chemotherapy as neoadjuvant treatment, and then continued as a single agent as adjuvant treatment after surgery.

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic TNBC whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test.

Merck’s focus on cancer
Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

New Survey Offers Perspective on Mental and Emotional Journey for Patients Diagnosed with Slow-Growing Blood Cancer

On June 24, 2022 AbbVie reported findings from the newly launched Emotional Impact Report, a survey of more than 300 chronic lymphocytic leukemia (CLL) patients, caregivers and healthcare providers (HCPs), which uncovered insights about the emotional journey associated with a CLL diagnosis (Press release, AbbVie, JUN 24, 2022, View Source [SID1234616232]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

CLL is a slow-growing form of blood cancer in which the bone marrow makes too many lymphocytes, a type of white blood cell.1 CLL progresses much slower than other forms of leukemia and many do not experience symptoms for several years. This leads to disease management with an approach called "watch and wait" in which the disease progression is monitored until treatment is deemed necessary.2

A CLL diagnosis can take a mental and emotional toll on patients, caregivers and HCPs and the Emotional Impact Report seeks to better understand that impact, raise awareness of the need for additional support and the importance of considering overall Quality of Life when making treatment decisions.3

Among a sample of 111 CLL patients, emotions ranged from angry and bitter to optimistic and grateful. For those CLL patients who were newly diagnosed and/or told by their HCP to watch and wait, many may feel hopeful (41%) and optimistic (36%), expressing they are looking forward to the future success of their treatment and their long-term prognosis. And once patients first receive treatment, many (42%) feel positive, including mentions of feeling confident, satisfied, or relieved as they see the medication working. Others mention feeling anxious, never knowing when they will need treatment again and not knowing what is next, further reinforcing the variation and complexity of emotions experienced by CLL patients.

"These findings highlight the ups and downs CLL patients can go through from potentially waiting to start treatment to the prospect of being on continuous therapy," said Ahmed Kotb, vice president, US medical affairs, oncology, AbbVie. "But patients don’t have to navigate a disease like CLL on their own. Based on insights from the Emotional Impact Report, there is an opportunity for increased dialogue between patients and their physicians to set treatment goals and understand available treatment options."

Furthermore, HCPs understand the importance of talking to their patients about the emotional impact of CLL. In fact, 71% said they are likely to discuss the emotional impact of CLL with their patients. Specifically, 90% recognize that a patient’s emotional well-being has an impact on their treatment plan. Physicians cited specific impacts, including adherence to treatment, ability to cope with treatment and how they respond to treatment. HCPs recognize that treating a CLL patient differs from treating other cancer patients, in that CLL is treated similarly to the way a chronic disease is treated, which increases the need to consider Quality of Life when making treatment decisions.

Among a sample of 100 caregivers, most (81%) feel positively about caring for someone with CLL and feel it is their duty to help their loved one. Yet, nearly three in four state that being a caregiver is more difficult than expected. As one caregiver noted, the biggest reason why they are nervous in their role is because they don’t know what’s going to happen from one minute to the next.

This U.S.-based survey was conducted between March 11 – April 7, 2022, and responses were obtained from 313 participants, which included 111 CLL patients, 100 caregivers and 102 HCPs. The online survey was sponsored by AbbVie and developed in consultation with C Space.

To learn more about CLL, navigating a diagnosis and understanding treatment goals, visit CLLCancer.com.

About Chronic Lymphocytic Leukemia
CLL is one of the two most common forms of leukemia in adults and is a type of cancer that can develop from cells in the bone marrow that later mature into certain white blood cells (called lymphocytes).1 While these cancer cells start in the bone marrow, they later spread into the blood. In 2019, there were approximately 200,766 people with CLL living in the United States with more than 20,000 new cases expected in 2022.4 CLL is predominately a disease of the elderly, with a median age at diagnosis of 65 to 70 years and is more common among men than women.5

About the Survey
Participants in the 31-35-question self-administered online survey included three groups, each with its own set and number of survey questions: patients, caregivers, and physicians who specialize in treating cancer. The patient group (n = 111) and the caregiver group (n = 100) included adults ages 18 and older from the U.S., and the physician group (n = 102) included board-certified hematologic oncologists, hematologists or medical oncologists who had treated at least five patients with CLL in the previous 12 months in the U.S. All surveys were completed between March 11, 2022, and April 7, 2022. Using the field services of C Space, the surveys asked both qualitative and quantitative questions. This online survey is not based on a probability sample and therefore no estimate of theoretical sampling error can be calculated.

About C Space
C Space is a global customer agency, that builds customers into the ways companies work.

Working with some of the world’s best-known brands – including Walmart, McDonald’s, IKEA and more – C Space builds the world’s most relevant brands by unlocking the power of human relationships. By building ongoing relationships with customers, brands can stay relevant, deliver superior experiences, and build loyalty. C Space’s customized customer programs are tailored based on specific business needs and include private online communities, in-person live events, visual storytelling, co-creation workshops, and business consulting.

Headquartered in Boston, C Space also has offices in London, New York, Tokyo, San Francisco, and Mexico City. C Space is a part of the Interbrand Group.