Positive Results of CONTESSA, a Phase 3 Study of Tesetaxel in Patients with Metastatic Breast Cancer, Presented at the 2020 San Antonio Breast Cancer Symposium (SABCS)

On December 11, 2020 Odonate Therapeutics, Inc. (NASDAQ: ODT), a pharmaceutical company dedicated to the development of best‑in‑class therapeutics that improve and extend the lives of patients with cancer, reported that positive results from CONTESSA, a Phase 3 study of tesetaxel in patients with metastatic breast cancer (MBC), were presented in an oral presentation at the 2020 San Antonio Breast Cancer Symposium (SABCS) (Press release, Odonate Therapeutics, DEC 11, 2020, View Source [SID1234572689]). The results were presented by Joyce O’Shaughnessy, M.D., Celebrating Women Chair in Breast Cancer Research, Baylor University Medical Center, Texas Oncology and Chair, Breast Cancer Research, US Oncology, and Co‑Principal Investigator of CONTESSA (please click here for slides).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

CONTESSA is a multinational, multicenter, randomized, Phase 3 study of tesetaxel, an investigational, orally administered taxane, in patients with MBC. CONTESSA is comparing tesetaxel dosed orally at 27 mg/m2 on the first day of each 21‑day cycle plus a reduced dose of capecitabine (1,650 mg/m2/day dosed orally for 14 days of each 21‑day cycle) to the approved dose of capecitabine alone (2,500 mg/m2/day dosed orally for 14 days of each 21‑day cycle) in 685 patients randomized 1:1 with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative MBC previously treated with a taxane in the neoadjuvant or adjuvant setting. Capecitabine is an oral chemotherapy agent that is considered a standard‑of‑care treatment in MBC. Where indicated, patients must have received endocrine therapy with or without a cyclin‑dependent kinase (CDK) 4/6 inhibitor. The primary endpoint is progression‑free survival (PFS) as assessed by the Independent Radiologic Review Committee (IRC). The secondary efficacy endpoints are overall survival (OS), objective response rate (ORR) as assessed by the IRC and disease control rate (DCR) as assessed by the IRC. CONTESSA is being conducted at 180 investigational sites in 18 countries in North America, Europe and Asia.

CONTESSA met the primary endpoint of improved PFS as assessed by the IRC. Median PFS was 9.8 months for tesetaxel plus a reduced dose of capecitabine versus 6.9 months for the approved dose of capecitabine alone, an improvement of 2.9 months. The risk of disease progression or death was reduced by 28.4% [hazard ratio=0.716 (95% confidence interval: 0.573-0.895); p=0.003] for tesetaxel plus a reduced dose of capecitabine versus the approved dose of capecitabine alone.

The ORR as assessed by the IRC was 57% for tesetaxel plus a reduced dose of capecitabine versus 41% for the approved dose of capecitabine alone (p=0.0002). The DCR as assessed by the IRC was 67% for tesetaxel plus a reduced dose of capecitabine versus 50% for the approved dose of capecitabine alone (p<0.0001). While OS data are immature, a recent interim analysis indicated the absence of an adverse effect on OS with tesetaxel plus a reduced dose of capecitabine. A protocol‑specified final analysis of OS is expected to occur in 2022.

Tesetaxel plus capecitabine was associated with a manageable side effect profile consistent with findings from previous clinical studies. Grade ≥3 treatment-emergent adverse events (TEAEs) that occurred in ≥5% of patients were: neutropenia (70.9% for tesetaxel plus capecitabine vs. 8.3% for capecitabine alone); diarrhea (13.1% for tesetaxel plus capecitabine vs. 8.9% for capecitabine alone); hand‑foot syndrome (6.8% for tesetaxel plus capecitabine vs. 12.2% for capecitabine alone); febrile neutropenia (13.1% for tesetaxel plus capecitabine vs. 1.2% for capecitabine alone); fatigue (8.6% for tesetaxel plus capecitabine vs. 4.5% for capecitabine alone); hypokalemia (8.6% for tesetaxel plus capecitabine vs. 2.7% for capecitabine alone); leukopenia (9.8% for tesetaxel plus capecitabine vs. 0.9% for capecitabine alone); and anemia (8.0% for tesetaxel plus capecitabine vs. 2.4% for capecitabine alone).

Adverse events resulting in treatment discontinuation in ≥1% of patients were: neutropenia or febrile neutropenia (4.2% for tesetaxel plus capecitabine vs. 1.5% for capecitabine alone); neuropathy (3.6% for tesetaxel plus capecitabine vs. 0.3% for capecitabine alone); sepsis or septic shock (1.8% for tesetaxel plus capecitabine vs. 0.6% for capecitabine alone); diarrhea (0.9% for tesetaxel plus capecitabine vs. 1.5% for capecitabine alone); and hand-foot syndrome (0.6% for tesetaxel plus capecitabine vs. 2.1% for capecitabine alone). Treatment discontinuation due to any adverse event occurred in 23.1% of patients treated with tesetaxel plus capecitabine versus 11.9% of patients treated with capecitabine alone.

Tesetaxel dose reductions occurred in 76% of patients treated with tesetaxel plus capecitabine, primarily due to neutropenia. Dose reductions occurred in 61% of patients treated with capecitabine alone, primarily due to hand-foot syndrome. The relative delivered dose intensity, which accounts for not only the frequency, but also the magnitude of reductions and treatment adherence, was higher in patients treated with tesetaxel plus capecitabine. Specifically, 81% of the intended dose of tesetaxel through cycle 12 was delivered in patients treated with tesetaxel plus capecitabine versus 76% of the intended dose of capecitabine through cycle 12 in patients treated with capecitabine alone.

Grade 2 alopecia (hair loss) occurred in 8.0% of patients treated with tesetaxel plus capecitabine versus 0.3% of patients treated with capecitabine alone. Grade ≥3 neuropathy occurred in 5.9% of patients treated with tesetaxel plus capecitabine versus 0.9% of patients treated with capecitabine alone. There were no treatment-related hypersensitivity reactions.

"Tesetaxel represents a potential important clinical advance for patients with metastatic breast cancer," said Joyce O’Shaughnessy, M.D. "There remains a significant unmet medical need for novel therapies that offer quality‑of‑life advantages for patients with metastatic breast cancer."

"The PFS improvement observed in CONTESSA, along with once‑every‑three‑weeks oral dosing and low rates of clinically significant hair loss and neuropathy, could make tesetaxel an important new treatment option for patients with metastatic breast cancer," said Andrew Seidman, M.D., Medical Director, Bobst International Center, Memorial Sloan Kettering Cancer Center and Professor of Medicine, Weill Cornell Medical College, and Co‑Principal Investigator of CONTESSA.

"We would like to thank all of the investigators, study team personnel, and especially the patients and their caregivers who made CONTESSA possible," said Kevin Tang, Chief Executive Officer of Odonate. "We look forward to working closely with global regulatory authorities to make tesetaxel available to patients with metastatic breast cancer. We plan to submit a New Drug Application for tesetaxel to the FDA in mid‑2021."

The Company will host a Virtual Investor and Analyst Event today at 1:00 p.m. CT / 2:00 p.m. ET.

Virtual Investor and Analyst Event Information

Date: December 11, 2020
Time: 1:00 p.m. CT / 2:00 p.m. ET
Webcast Link: Please click here
Dial-in (domestic): (866) 300-4090
Dial-in (international): (636) 812‑6660
Conference ID: 8698553

About Tesetaxel

Tesetaxel is an investigational, orally administered chemotherapy agent that belongs to a class of drugs known as taxanes, which are widely used in the treatment of cancer. Tesetaxel has several pharmacologic properties that make it unique among taxanes, including: oral administration with a low pill burden; a long (~8-day) terminal plasma half-life in humans, enabling the maintenance of adequate drug levels with relatively infrequent dosing; no history of hypersensitivity (allergic) reactions; and significant activity against chemotherapy-resistant tumors. In patients with metastatic breast cancer, tesetaxel was shown to have significant, single-agent antitumor activity in two multicenter, Phase 2 studies. Tesetaxel currently is the subject of three studies in breast cancer, including a multinational, multicenter, randomized, Phase 3 study in patients with metastatic breast cancer, known as CONTESSA. Positive results of CONTESSA were recently presented at the 2020 San Antonio Breast Cancer Symposium.

About CONTESSA

CONTESSA is a multinational, multicenter, randomized, Phase 3 study of tesetaxel, an investigational, orally administered taxane, in patients with metastatic breast cancer (MBC). CONTESSA is comparing tesetaxel dosed orally at 27 mg/m2 on the first day of each 21-day cycle plus a reduced dose of capecitabine (1,650 mg/m2/day dosed orally for 14 days of each 21-day cycle) to the approved dose of capecitabine alone (2,500 mg/m2/day dosed orally for 14 days of each 21-day cycle) in 685 patients randomized 1:1 with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)‑negative MBC previously treated with a taxane in the neoadjuvant or adjuvant setting. Capecitabine is an oral chemotherapy agent that is considered a standard-of-care treatment in MBC. Where indicated, patients must have received endocrine therapy with or without a cyclin-dependent kinase (CDK) 4/6 inhibitor. The primary endpoint is progression-free survival (PFS) as assessed by an Independent Radiologic Review Committee (IRC). The secondary efficacy endpoints are overall survival (OS), objective response rate (ORR) as assessed by the IRC and disease control rate (DCR) as assessed by the IRC.

BAVENCIO® (AVELUMAB) RECEIVES POSITIVE CHMP OPINION FOR FIRST-LINE MAINTENANCE TREATMENT OF LOCALLY ADVANCED OR METASTATIC UROTHELIAL CARCINOMA

On December 11, 2020 EMD Serono, the biopharmaceutical business of Merck KGaA, Darmstadt, Germany in the US and Canada, and Pfizer Inc. (NYSE: PFE) reported that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) adopted a positive opinion recommending approval of BAVENCIO (avelumab) as monotherapy for the first-line maintenance treatment of adult patients with locally advanced or metastatic urothelial carcinoma (UC) who are progression-free following platinum-based chemotherapy (Press release, EMD Serono, DEC 11, 2020, View Source [SID1234572687]). The CHMP positive opinion will now be reviewed by the European Commission (EC), with a decision expected in early 2021.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The opinion was based on positive findings from the Phase III JAVELIN Bladder 100 trial, results of which were published in The New England Journal of Medicine in September.1 BAVENCIO is the only immunotherapy to significantly prolong overal survival (OS) in locally advanced or metastatic UC in the first-line setting in a Phase III trial.

"Patients living with locally advanced or metastatic urothelial carcinoma in Europe are in urgent need of more treatment options that have the potential to extend their lives," said Chris Boshoff, M.D., Ph.D., Chief Development Officer, Oncology, Pfizer Global Product Development. "The overall survival results from JAVELIN Bladder100 show the potential benefits of a first-line maintenance approach with BAVENCIO as a significant advancement for patients with locally advanced or metastatic urothelial carcinoma."

Bladder cancer is the tenth most common cancer worldwide.2 In Europe alone, nearly 200,000 people are diagnosed with bladder cancer each year and more than 60,000 patients die from the disease, despite available treatments.3 UC, which accounts for about 90% of all bladder cancers, becomes harder to treat as it advances, spreading through the layers of the bladder wall.4,5 For patients with advanced UC, the five-year survival rate is 5%.6 About 4% of bladder cancers are diagnosed at an advanced stage.7

"BAVENCIO is the only immunotherapy treatment to demonstrate in the first-line setting the ability to help patients with locally advanced or metastatic urothelial carcinoma live longer," said Danny Bar-Zohar, M.D., Global Head of Development for the Biopharma business of Merck KGaA, Darmstadt, Germany. "Now with this positive opinion, we have come a big step closer to being able to offer a new option that may shift the treatment paradigm for patients in Europe."

In June 2020, the US Food and Drug Administration (FDA) approved BAVENCIO for the maintenance treatment of patients with locally advanced or metastatic UC that has not progressed with first-line platinum-containing chemotherapy. Additional regulatory applications have been submitted in Japan and other countries.

About JAVELIN Bladder 100

JAVELIN Bladder 100 (NCT02603432) is a Phase III, multicenter, multinational, randomized, open-label, parallel-arm study investigating first-line maintenance treatment with BAVENCIO plus best supportive care (BSC) versus BSC alone in patients with locally advanced or metastatic UC. A total of 700 patients whose disease had not progressed after platinum-based induction chemotherapy as per RECIST v1.1 were randomly assigned to receive either BAVENCIO plus BSC or BSC alone. The primary endpoint was OS in the two primary populations of all patients and patients with PD-L1+ tumors.

About BAVENCIO (avelumab)

BAVENCIO is a human anti-programmed death ligand-1 (PD-L1) antibody. BAVENCIO has been shown in preclinical models to engage both the adaptive and innate immune functions. By blocking the interaction of PD-L1 with PD-1 receptors, BAVENCIO has been shown to release the suppression of the T cell-mediated antitumor immune response in preclinical models.8-10 In November 2014, Merck KGaA, Darmstadt, Germany and Pfizer announced a strategic alliance to co-develop and co-commercialize BAVENCIO.

BAVENCIO Approved Indications

BAVENCIO (avelumab) is indicated in the US for the maintenance treatment of patients with locally advanced or metastatic urothelial carcinoma (UC) that has not progressed with first-line platinum-containing chemotherapy. BAVENCIO is also indicated for the treatment of patients with locally advanced or metastatic UC who have disease progression during or following platinum-containing chemotherapy, or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

BAVENCIO in combination with axitinib is indicated in the US for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

In the US, the FDA granted accelerated approval for BAVENCIO for the treatment of adults and pediatric patients 12 years and older with metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval may be contingent upon verification and description of clinical benefit in confirmatory trials.

BAVENCIO is currently approved for patients in 50 countries for at least one use.

BAVENCIO Important Safety Information from the US FDA-Approved Label BAVENCIO can cause immune-mediated pneumonitis, including fatal cases. Monitor patients for signs and symptoms of pneumonitis and evaluate suspected cases with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold BAVENCIO for moderate (Grade 2) and permanently discontinue for severe (Grade 3), lif e-threatening (Grade 4), or recurrent moderate

(Grade 2) pneumonitis. Pneumonitis occurred in 1.2% of patients, including one (0.1%) patient with fatal, one (0.1%) with Grade 4, and five (0.3%) with Grade 3.

BAVENCIO can cause hepatotoxicity and immune-mediated hepatitis, including fatal cases. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater hepatitis. Withhold BAVENCIO for moderate (Grade 2) immune-mediated hepatitis until resolution and permanently discontinue for severe (Grade 3) or lif e-threatening (Grade 4) immune-mediated hepatitis. Immune-mediated hepatitis occurred with BAVENCIO as a single agent in 0.9% of patients, including two (0.1%) patients with fatal, and 11 (0.6%) with Grade 3.

BAVENCIO in combination with axitinib can cause hepatotoxicity with higher than expected frequencies of Grade 3 and 4 alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation. Consider more frequent monitoring of liver enzymes as compared to when the drugs are used as monotherapy. Withhold BAVENCIO and axitinib for moderate (Grade

2) hepatotoxicity and permanently discontinue the combination for severe or lif e-threatening (Grade 3 or 4) hepatotoxicity. Administer corticosteroids as needed. In patients treated with BAVENCIO in combination with axitinib, Grades 3 and 4 increased ALT and AST occurred in 9% and 7% of patients, respectively, and immune-mediated hepatitis occurred in 7% of patients, including 4.9% with Grade 3 or 4.

BAVENCIO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold BAVENCIO until resolution for moderate or severe (Grade 2 or 3) colitis until resolution. Permanently discontinued for life-threatening (Grade 4) or recurrent (Grade 3) colitis upon reinitiation of BAVENCIO. Immune-mediated colitis occurred in 1.5% of patients, including seven (0.4%) with Grade 3.

BAVENCIO can cause immune-mediated endocrinopathies, including adrenal insufficiency, thyroid disorders, and type 1 diabetes mellitus.

Monitor patients for signs and symptoms of adrenal insufficiency during and after treatment, and administer corticosteroids as appropriate. Withhold BAVENCIO for severe (Grade 3) or lif e-threatening (Grade 4) adrenal insufficiency. Adrenal insufficiency was reported in 0.5% of patients, including one (0.1%) with Grade 3.

Thyroid disorders can occur at any time during treatment. Monitor patients for changes in thyroid function at the start of treatment, periodically during treatment, and as indicated based on clinical evaluation. Manage hypothyroidism with hormone replacement therapy and control hyperthyroidism with medical management. Withhold BAVENCIO for severe (Grade 3) or lif e-threatening (Grade 4) thyroid disorders. Thyroid disorders, including hypothyroidism, hyperthyroidism, and thyroiditis, were reported in 6% of patients, including three (0.2%) with Grade 3.

Type 1 diabetes mellitus including diabetic ketoacidosis: Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Withhold BAVENCIO and administer antihyperglycemics or insulin in patients with severe or lif e-threatening (Grade ≥3) hyperglycemia, and resume treatment when metabolic control is achieved. Type 1 diabetes mellitus without an alternative etiology occurred in 0.1% of patients, including two cases of Grade 3 hyperglycemia.

BAVENCIO can cause immune-mediated nephritis and renal dysfunction. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater nephritis. Withhold BAVENCIO for moderate (Grade 2) or severe (Grade 3) nephritis until resolution to Grade 1 or lower. Permanently discontinue BAVENCIO for lif e-threatening (Grade 4) nephritis. Immune-mediated nephritis occurred in 0.1% of patients.

BAVENCIO can result in other severe and fatal immune-mediated adverse reactions involving any organ system during treatment or af ter treatment discontinuation. For suspected immune-mediated adverse reactions, evaluate to confirm or rule out an immune-mediated adverse reaction and to exclude other causes. Depending on the severity of the adverse reaction, withhold or permanently

discontinue BAVENCIO, administer high-dose corticosteroids, and initiate hormone replacement therapy, if appropriate. Resume BAVENCIO when the immune- mediated adverse reaction remains at Grade 1 or lower following a corticosteroid taper. Permanently discontinue BAVENCIO for any severe (Grade 3) immune- mediated adverse reaction that recurs and for any lif e-threatening (Grade 4) immune-mediated adverse reaction. The following clinically significant immune- mediated adverse reactions occurred in less than 1% of 1738 patients treated with BAVENCIO as a single agent or in 489 patients who received BAVENCIO in combination with axitinib: myocarditis including fatal cases, pancreatitis including fatal cases, myositis, psoriasis, arthritis, exfoliative dermatitis, erythema multiforme, pemphigoid, hypopituitarism, uveitis, Guillain-Barré syndrome, and systemic inflammatory response.

BAVENCIO can cause severe or lif e-threatening infusion-related reactions. Premedicate patients with an antihistamine and acetaminophen prior to the first 4 infusions. Monitor patients for signs and symptoms of infusion-related reactions, including pyrexia, chills, flushing, hypotension, dyspnea, wheezing, back pain, abdominal pain, and urticaria. Interrupt or slow the rate of infusion for mild (Grade

1) or moderate (Grade 2) infusion-related reactions. Permanently discontinue BAVENCIO for severe (Grade 3) or lif e-threatening (Grade 4) infusion-related reactions. Infusion-related reactions occurred in 25% of patients, including three (0.2%) patients with Grade 4 and nine (0.5%) with Grade 3.

BAVENCIO in combination withaxitinib can cause major adverse cardiovascular events (MACE) including severe and fatal events. Consider baseline and periodic evaluations of left ventricular ejection fraction. Monitor for signs and symptoms of cardiovascular events. Optimize management of cardiovascular risk factors, such as hypertension, diabetes, or dyslipidemia. Discontinue BAVENCIO and axitinib for Grade 3-4 cardiovascular events. MACE occurred in 7% of patients with advanced RCC treated with BAVENCIO in combination with axitinib compared to 3.4% treated with sunitinib. These events included death due to cardiac events (1.4%), Grade 3- 4 myocardial infarction (2.8%), and Grade 3-4 congestive heart failure (1.8%).

BAVENCIO can cause fetal harm when administered to a pregnant woman. Advise patients of the potential risk to a fetus including the risk of fetal death. Advise

females of childbearing potential to use effective contraception during treatment with BAVENCIO and for at least 1 month after the last dose of BAVENCIO. It is not known whether BAVENCIO is excreted in human milk. Advise a lactating woman not to breastfeed during treatment and for at least 1 month after the last dose of BAVENCIO due to the potential for serious adverse reactions in breastfed infants.

A fatal adverse reaction (sepsis) occurred in one (0.3%) patient with locally advanced or metastatic urothelial carcinoma (UC) receiving BAVENCIO plus best supportive care (BSC) as first-line maintenance treatment. In patients with previously treated locally advanced or metastatic UC, fourteen patients (6%) who were treated with BAVENCIO experienced either pneumonitis, respiratory failure, sepsis/urosepsis, cerebrovascular accident, or gastrointestinal adverse events, which led to death.

The most common adverse reactions (all grades, ≥20%) in patients with locally advanced or metastatic UC receiving BAVENCIO plus BSC (vs BSC alone) as f irst- line maintenance treatment were fatigue (35% vs 13%), musculoskeletal pain (24% vs 15%), urinary tract infection (20% vs 11%), and rash (20% vs 2.3%). In patients with previously treated locally advanced or metastatic UC receiving BAVENCIO, the most common adverse reactions (all grades, ≥20%) were fatigue, infusion-related reaction, musculoskeletal pain, nausea, decreased appetite, and urinary tract infection.

Selected laboratory abnormalities (all grades, ≥20%) in patients with locally advanced or metastatic UC receiving BAVENCIO plus BSC (vs BSC alone) as f irst- line maintenance treatment were blood triglycerides increased (34% vs 28%), alkaline phosphatase increased (30% vs 20%), blood sodium decreased (28% vs 20%), lipase increased (25% vs 16%), aspartate aminotransferase (AST) increased (24% vs 12%), blood potassium increased (24% vs 16%), alanine aminotransferase(ALT) increased (24% vs 12%), blood cholesterol increased (22% vs 16%), seruma mylase increased (21% vs 12%), hemoglobin decreased (28% vs 18%), and white blood cell decreased (20% vs 10%).

Fatal adverse reactions occurred in 1.8% of patients with advanced renal cell carcinoma (RCC) receiving BAVENCIO in combination with axitinib. These included sudden cardiac death (1.2%), stroke (0.2%), myocarditis (0.2%), and necrotizing pancreatitis (0.2%).

The most common adverse reactions (all grades, ≥20%) in patients with advanced RCC receiving BAVENCIO in combination with axitinib (vs sunitinib) were diarrhea (62% vs 48%), fatigue (53% vs 54%), hypertension (50% vs 36%), musculoskeletal pain (40% vs 33%), nausea (34% vs 39%), mucositis (34% vs 35%), palmar-plantar erythrodysesthesia (33% vs 34%), dysphonia (31% vs 3.2%), decreased appetite (26% vs 29%), hypothyroidism (25% vs 14%), rash (25% vs 16%), hepatotoxicity (24% vs 18%), cough (23% vs 19%), dyspnea (23% vs 16%), abdominal pain (22% vs 19%), and headache (21% vs 16%).

Selected laboratory abnormalities (all grades, ≥20%) worsening from baseline in patients with advanced RCC receiving BAVENCIO in combination with axitinib (vs sunitinib) were blood triglycerides increased (71% vs 48%), blood creatinine increased (62% vs 68%), blood cholesterol increased (57% vs 22%), alanine aminotransferase increased (ALT) (50% vs 46%), aspartate aminotransferase increased (AST) (47% vs 57%), blood sodium decreased (38% vs 37%), lipase increased (37% vs 25%), blood potassium increased (35% vs 28%), platelet count decreased (27% vs 80%), blood bilirubin increased (21% vs 23%), and hemoglobin decreased (21% vs 65%).

The most common adverse reactions (all grades, ≥20%) in patients with metastatic Merkel cell carcinoma (MCC) were fatigue (50%), musculoskeletal pain (32%), diarrhea (23%), nausea (22%), infusion-related reaction (22%), rash (22%), decreased appetite (20%), and peripheral edema (20%).

Selected treatment-emergent laboratory abnormalities (all grades, ≥20%) in patients with metastatic MCC were lymphopenia (49%), anemia (35%), increased aspartate aminotransferase (34%), thrombocytopenia (27%), and increased alanine aminotransferase (20%).

Lexicon Announces Offering of Common Stock

On December 11, 2020 Lexicon Pharmaceuticals, Inc. (Nasdaq: LXRX) reported that it had entered into a securities purchase agreement with certain institutional investors providing for the purchase and sale, in a registered direct offering, of 20,312,500 shares of its common stock, par value $0.001 (the "Common Stock"), at a price of $3.20 per share, for aggregate gross proceeds to the Company of $65,000,000 before deducting fees to the placement agent and other estimated offering expenses payable by the Company (Press release, Lexicon Pharmaceuticals, DEC 11, 2020, View Source [SID1234572685]). The transaction is expected to close on December 16, 2020, subject to satisfaction of customary closing conditions.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The investors in the registered direct offering were Artal International S.C.A., an affiliate of Invus, L.P., and BVF Partners L.P. and certain affiliates of BVF Partners L.P.

Citigroup Global Markets Inc. is acting as placement agent for the offering on a "reasonable best efforts" basis.

The Common Stock described above is being offered by the Company pursuant to a "shelf" registration statement on Form S-3, which was originally filed with the Securities and Exchange Commission (the "SEC") on November 7, 2019, and was declared effective on November 18, 2019 (File No. 333-234568). A prospectus supplement and accompanying prospectus relating to the offering will be filed with the SEC and will be available for free on the SEC’s website at View Source or may be obtained from: Citigroup Global Markets Inc., c/o Broadridge Financial Services, 1155 Long Island Avenue, Edgewood, NY 11717, or by telephone at 1-800-831-9146.

This press release shall not constitute an offer to sell or a solicitation of an offer to buy these securities, nor shall there be any sale of these securities in any state or other jurisdiction in which such offer, solicitation or sale would be unlawful prior to the registration or qualification under the securities laws of any such state or other jurisdiction.

Seagen Announces Positive CHMP Opinion for TUKYSA® (tucatinib) for the Treatment of Patients with Locally Advanced or Metastatic HER2-Positive Breast Cancer

On December 11, 2020 Seagen Inc. (Nasdaq:SGEN) reported that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency adopted a positive opinion recommending the approval of TUKYSA (tucatinib) in combination with trastuzumab and capecitabine for the treatment of adult patients with HER2-positive locally advanced or metastatic breast cancer who have received at least 2 prior anti-HER2 treatment regimens (Press release, Seagen, DEC 11, 2020, View Source [SID1234572684]). TUKYSA is an oral, small molecule tyrosine kinase inhibitor (TKI) of HER2, a protein that contributes to cancer cell growth.1,2

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The CHMP positive opinion will now be considered by the European Commission (EC), which has the authority to approve medicines in the European Union (EU). TUKYSA is approved in the United States, Canada, Switzerland, Singapore and Australia.

"We are pleased the CHMP has recognized TUKYSA as a meaningful clinical advance for people with advanced HER2-positive metastatic breast cancer, including those with cancer that has spread to the brain," said Roger Dansey, M.D., Chief Medical Officer at Seagen. "This opinion brings us one step closer to making TUKYSA available to patients in the EU and aligns with our commitment to bring innovative therapies to patients around the world."

The positive CHMP opinion is based on results of the pivotal trial HER2CLIMB and were published inThe New England Journal of Medicinein December 2019.

About HER2CLIMB

HER2CLIMB is a randomized, double-blind, placebo-controlled, active comparator, global trial that enrolled 612 patients with HER2-positive unresectable locally advanced or metastatic breast cancer who had previously received, either separately or in combination, trastuzumab, pertuzumab, and ado-trastuzumab emtansine (T-DM1). The results for the primary endpoint showed patients who received TUKYSA in combination with trastuzumab and capecitabine had a 46 percent reduction in the risk of cancer progression or death (PFS) compared to patients who received trastuzumab and capecitabine alone (hazard ratio (HR)=0.54 [95% Confidence Interval (CI): 0.42, 0.71]; p<0.00001). A secondary endpoint showed that the addition of TUKYSA reduced the risk of death (OS) by 34 percent compared to trastuzumab and capecitabine alone (HR=0.66 [95% CI: 0.50, 0.87]; p=0.0048). Based on the results, TUKYSA was approved in the U.S. in combination with trastuzumab and capecitabine for treatment of adult patients with advanced unresectable or metastatic HER2-positive breast cancer, including patients with brain metastases, who have received one or more prior anti-HER2-based regimens in the metastatic setting.

About HER2-Positive Breast Cancer

Patients with HER2-positive breast cancer have tumors with high levels of a protein called human epidermal growth factor receptor 2 (HER2), which promotes the growth of cancer cells. In 2018, more than two million new cases of breast cancer were diagnosed worldwide, including 522,513 in Europe.3 Between 15 and 20 percent of breast cancer cases are HER2-positive.4 Historically, HER2-positive breast cancer tends to be more aggressive and more likely to recur than HER2-negative breast cancer.5,4,6 Up to 50 percent of metastatic HER2-positive breast cancer patients develop brain metastases over time.7,8,9

About TUKYSA (tucatinib)

TUKYSA is an oral medicine that is a tyrosine kinase inhibitor of the HER2 protein. In vitro (in lab studies), TUKYSA inhibited phosphorylation of HER2 and HER3, resulting in inhibition of downstream MAPK and AKT signaling and cell growth (proliferation), and showed anti-tumor activity in HER2-expressing tumor cells. In vivo (in living organisms), TUKYSA inhibited the growth of HER2-expressing tumors. The combination of TUKYSA and the anti-HER2 antibody trastuzumab showed increased anti-tumor activity in vitro and in vivo compared to either medicine alone.1

U.S. Important Safety Information

Warnings and Precautions

Diarrhea – TUKYSA can cause severe diarrhea including dehydration, hypotension, acute kidney injury, and death. In HER2CLIMB, 81% of patients who received TUKYSA experienced diarrhea, including 12% with Grade 3 diarrhea and 0.5% with Grade 4 diarrhea. Both patients who developed Grade 4 diarrhea subsequently died, with diarrhea as a contributor to death. The median time to onset of the first episode of diarrhea was 12 days and the median time to resolution was 8 days. Diarrhea led to dose reductions of TUKYSA in 6% of patients and discontinuation of TUKYSA in 1% of patients. Prophylactic use of antidiarrheal treatment was not required on HER2CLIMB.

If diarrhea occurs, administer antidiarrheal treatment as clinically indicated. Perform diagnostic tests as clinically indicated to exclude other causes of diarrhea. Based on the severity of the diarrhea, interrupt dose, then dose reduce or permanently discontinue TUKYSA.
Hepatotoxicity – TUKYSA can cause severe hepatotoxicity. In HER2CLIMB, 8% of patients who received TUKYSA had an ALT increase >5 × ULN, 6% had an AST increase >5 × ULN, and 1.5% had a bilirubin increase >3 × ULN (Grade ≥3). Hepatotoxicity led to dose reduction of TUKYSA in 8% of patients and discontinuation of TUKYSA in 1.5% of patients.

Monitor ALT, AST, and bilirubin prior to starting TUKYSA, every 3 weeks during treatment, and as clinically indicated. Based on the severity of hepatotoxicity, interrupt dose, then dose reduce or permanently discontinue TUKYSA.
Embryo-Fetal Toxicity – TUKYSA can cause fetal harm. Advise pregnant women and females of reproductive potential risk to a fetus. Advise females of reproductive potential, and male patients with female partners of reproductive potential, to use effective contraception during TUKYSA treatment and for at least 1 week after the last dose.
Adverse Reactions

Serious adverse reactions occurred in 26% of patients who received TUKYSA. Serious adverse reactions in ≥2% of patients who received TUKYSA were diarrhea (4%), vomiting (2.5%), nausea (2%), abdominal pain (2%), and seizure (2%). Fatal adverse reactions occurred in 2% of patients who received TUKYSA including sudden death, sepsis, dehydration, and cardiogenic shock.

Adverse reactions led to treatment discontinuation in 6% of patients who received TUKYSA; those occurring in ≥1% of patients were hepatotoxicity (1.5%) and diarrhea (1%). Adverse reactions led to dose reduction in 21% of patients who received TUKYSA; those occurring in ≥2% of patients were hepatotoxicity (8%) and diarrhea (6%).

The most common adverse reactions in patients who received TUKYSA (≥20%) were diarrhea, palmar-plantar erythrodysesthesia, nausea, fatigue, hepatotoxicity, vomiting, stomatitis, decreased appetite, abdominal pain, headache, anemia, and rash.

Lab Abnormalities

In HER2CLIMB, Grade ≥3 laboratory abnormalities reported in ≥5% of patients who received TUKYSA were: decreased phosphate, increased ALT, decreased potassium, and increased AST. The mean increase in serum creatinine was 32% within the first 21 days of treatment with TUKYSA. The serum creatinine increases persisted throughout treatment and were reversible upon treatment completion. Consider alternative markers of renal function if persistent elevations in serum creatinine are observed.

Drug Interactions

Strong CYP3A or Moderate CYP2C8 Inducers: Concomitant use may decrease TUKYSA activity. Avoid concomitant use of TUKYSA.
Strong or Moderate CYP2C8 Inhibitors : Concomitant use of TUKYSA with a strong CYP2C8 inhibitor may increase the risk of TUKYSA toxicity; avoid concomitant use. Increase monitoring for TUKYSA toxicity with moderate CYP2C8 inhibitors.
CYP3A Substrates: Concomitant use may increase the toxicity associated with a CYP3A substrate. Avoid concomitant use of TUKYSA where minimal concentration changes may lead to serious or life-threatening toxicities. If concomitant use is unavoidable, decrease the CYP3A substrate dosage.
P-gp Substrates: Concomitant use may increase the toxicity associated with a P-gp substrate. Consider reducing the dosage of P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicity.
Use in Specific Populations

Lactation: Advise women not to breastfeed while taking TUKYSA and for at least 1 week after the last dose.
Renal Impairment: Use of TUKYSA in combination with capecitabine and trastuzumab is not recommended in patients with severe renal impairment (CLcr < 30 mL/min), because capecitabine is contraindicated in patients with severe renal impairment.
Hepatic Impairment: Reduce the dose of TUKYSA for patients with severe (Child-Pugh C) hepatic impairment.

Merck Receives Positive EU CHMP Opinion for KEYTRUDA® (pembrolizumab) as First-Line Treatment in Adult Patients With Metastatic Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient (dMMR) Colorectal Cancer

On December 11, 2020 Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency has adopted a positive opinion recommending approval of KEYTRUDA, Merck’s anti-PD-1 therapy, as monotherapy for the first-line treatment of adult patients with metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) colorectal cancer (Press release, Merck & Co, DEC 11, 2020, View Source [SID1234572683]). This recommendation is based on results from the pivotal Phase 3 KEYNOTE-177 trial, in which KEYTRUDA, as a monotherapy, demonstrated a significant improvement in progression-free survival compared to chemotherapy (investigator’s choice: mFOLFOX6 with or without bevacizumab or cetuximab; or FOLFIRI with or without bevacizumab or cetuximab), a current standard of care.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Patients in Europe with MSI-H/dMMR colorectal cancer have had only chemotherapy-containing regimens available to them in the first-line treatment setting and have historically faced poor outcomes," said Dr. Vicki Goodman, vice president, clinical research, Merck Research Laboratories. "This positive EU CHMP opinion reinforces the potential of KEYTRUDA as a new option for patients with MSI-H/dMMR colorectal cancer and illustrates our ongoing commitment to pursuing biomarker research to help address the needs of patients who have few effective options."

Data from KEYNOTE-177 were presented at the virtual scientific program of the 2020 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting and were published in The New England Journal of Medicine. The CHMP’s recommendation will now be reviewed by the European Commission for marketing authorization in the European Union, and a final decision is expected in the first quarter of 2021.

About Microsatellite Instability-High

Microsatellite instability (or MSI) is defined by the National Cancer Institute as a change that occurs in the DNA of certain cells, such as tumor cells, in which the number of repeats of microsatellites (short, repeated sequences of DNA) is different from the number of repeats that was in the DNA when it was inherited. The cause of MSI may be a defect in the ability to repair mistakes made when DNA is copied in the cell. This defect is also referred to as mismatch repair deficiency (dMMR). It is estimated approximately 5-15% of colorectal cancer patients have tumors that score as either MSI-H or dMMR when testing is performed.

About Colorectal Cancer in Europe

Colorectal cancer starts in the colon or the rectum, and these cancers are referred to as colon cancer or rectal cancer depending on where the cancer starts. Colorectal cancer often begins with growths on the inner lining of the colon or rectum called polyps, which can change into cancer over time. Colorectal cancer is the third most commonly diagnosed cancer and the second most common cause of cancer-related death worldwide. It is estimated there were about 1,850,000 new cases of colorectal cancer globally in 2018. In Europe alone, it is estimated there were nearly 500,000 new cases of colorectal cancer.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 1,300 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (CPS ≥10), as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic triple-negative breast cancer (TNBC) whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the programmed death receptor-1 (PD-1) or the programmed death ligand 1 (PD-L1), blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of anti–PD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients, 42% of these patients interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen, which was at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT ≥3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT ≥3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT ≥3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1). All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with anti–PD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other anti–PD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after anti–PD-1/PD-L1 treatment. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between anti–PD-1/PD-L1 treatment and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using anti–PD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an anti–PD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-204, KEYTRUDA was discontinued due to adverse reactions in 14% of 148 patients with cHL. Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA; those ≥1% were pneumonitis, pneumonia, pyrexia, myocarditis, acute kidney injury, febrile neutropenia, and sepsis. Three patients died from causes other than disease progression: 2 from complications after allogeneic HSCT and 1 from unknown cause. The most common adverse reactions (≥20%) were upper respiratory tract infection (41%), musculoskeletal pain (32%), diarrhea (22%), and pyrexia, fatigue, rash, and cough (20% each).

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% were pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression: 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

Adverse reactions occurring in patients with cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-355, when KEYTRUDA and chemotherapy (paclitaxel, paclitaxel protein-bound, or gemcitabine and carboplatin) were administered to patients with locally recurrent unresectable or metastatic TNBC (n=596) who had not been previously treated with chemotherapy in the metastatic setting, fatal adverse reactions occurred in 2.5% of patients, including cardio-respiratory arrest (0.7%) and septic shock (0.3%). Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA in combination with chemotherapy, the most common were: pneumonia (2.9%), anemia (2.2%), and thrombocytopenia (2%). KEYTRUDA was discontinued in 11% of patients due to adverse reactions. The most common adverse reactions resulting in permanent discontinuation (≥1%) were increased ALT (2.2%), increased AST (1.5%), and pneumonitis (1.2%). The most common adverse reactions (≥20%) in patients receiving KEYTRUDA in combination with chemotherapy were: fatigue (48%), nausea (44%), alopecia (34%), diarrhea and constipation (28% each), vomiting and rash (26% each), cough (23%), decreased appetite (21%), and headache (20%).

Lactation

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use

In KEYNOTE-051, 161 pediatric patients (62 pediatric patients aged 6 months to younger than 12 years and 99 pediatric patients aged 12 years to 17 years) were administered KEYTRUDA 2 mg/kg every 3 weeks. The median duration of exposure was 2.1 months (range: 1 day to 24 months).

Adverse reactions that occurred at a ≥10% higher rate in pediatric patients when compared to adults were pyrexia (33%), vomiting (30%), leukopenia (30%), upper respiratory tract infection (29%), neutropenia (26%), headache (25%), and Grade 3 anemia (17%).

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.