Bristol Myers Squibb Receives Positive CHMP Opinion Recommending Approval of Opdivo (nivolumab) Plus Yervoy (ipilimumab) Combined with Two Cycles of Chemotherapy as First-Line Treatment of Metastatic Non-Small Cell Lung Cancer

On September 18, 2020 Bristol Myers Squibb (NYSE: BMY) reported that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has recommended approval of Opdivo (nivolumab) plus Yervoy (ipilimumab) with two cycles of platinum-based chemotherapy for the first-line treatment of metastatic non-small cell lung cancer (NSCLC) in adults whose tumors have no sensitizing EGFR mutation or ALK translocation (Press release, Bristol-Myers Squibb, SEP 18, 2020, View Source [SID1234565361]). The European Commission (EC), which has the authority to approve medicines for the European Union (EU), will now review the CHMP recommendation.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"This positive CHMP opinion reflects the potential for Opdivo plus Yervoy with two cycles of chemotherapy to offer the chance for a longer life to patients across subgroups of metastatic NSCLC, a devastating cancer where unmet needs still exist," said Abderrahim Oukessou, M.D., vice president, thoracic cancers development lead, Bristol Myers Squibb. "We look forward to the EC’s decision and hope to soon introduce this innovative, dual immunotherapy approach to patients across the EU who may benefit."

The CHMP adopted the positive opinion based on results from the Phase 3 CheckMate -9LA trial, which met the primary endpoint of superior overall survival (OS). The safety profile of Opdivo plus Yervoy and two cycles of chemotherapy was reflective of the known safety profiles of the immunotherapy and chemotherapy components in first-line NSCLC. The full data from the CheckMate -9LA trial were featured in an oral session at the American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) 2020 (ASCO20) Virtual Scientific Program.

To date, the combination of Opdivo plus Yervoy with two cycles of chemotherapy has been approved in nine countries, including the U.S., for the first-line treatment of patients with metastatic NSCLC. Approval by the EC would mark the third indication for Opdivo plus Yervoy­-based combinations in the EU, following previous approvals in metastatic melanoma and advanced renal cell carcinoma.

Bristol Myers Squibb thanks the patients and investigators who were involved in the CheckMate -9LA clinical trial.

About CheckMate -9LA

CheckMate -9LA is an open-label, multi-center, randomized Phase 3 trial evaluating Opdivo (360 mg Q3W) plus Yervoy (1 mg/kg Q6W) combined with histology-based chemotherapy (two cycles) compared to chemotherapy alone (up to four cycles followed by optional pemetrexed maintenance therapy if eligible) as a first-line treatment in patients with metastatic non-small cell lung cancer (NSCLC) regardless of PD-L1 expression and histology. Patients in the experimental arm (n=361) were treated with dual immunotherapy for up to two years or until disease progression or unacceptable toxicity. Patients in the control arm (n=358) were treated with up to four cycles of chemotherapy and optional pemetrexed maintenance (if eligible) until disease progression or unacceptable toxicity. The primary endpoint of the trial was overall survival (OS) in the intent-to-treat (ITT) population. Secondary hierarchical endpoints included progression-free survival (PFS) and overall response rate (ORR) as assessed by blinded independent review committee. Exploratory analyses from the study evaluated efficacy measures according to biomarkers.

About Lung Cancer

Lung cancer is the leading cause of cancer deaths globally. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is one of the most common types of lung cancer and accounts for up to 84% of diagnoses. Survival rates vary depending on the stage and type of the cancer when diagnosed. For patients diagnosed with metastatic NSCLC, the five-year survival rate is approximately 6%.

Bristol Myers Squibb: Advancing Cancer Research

At Bristol Myers Squibb, patients are at the center of everything we do. The goal of our cancer research is to increase patients’ quality of life, long-term survival and make cure a possibility. We harness our deep scientific experience, cutting-edge technologies and discovery platforms to discover, develop and deliver novel treatments for patients.

Building upon our transformative work and legacy in hematology and Immuno-Oncology that has changed survival expectations for many cancers, our researchers are advancing a deep and diverse pipeline across multiple modalities. In the field of immune cell therapy, this includes registrational CAR T cell agents for numerous diseases, and a growing early-stage pipeline that expands cell and gene therapy targets, and technologies. We are developing cancer treatments directed at key biological pathways using our protein homeostasis platform, a research capability that has been the basis of our approved therapies for multiple myeloma and several promising compounds in early- to mid-stage development. Our scientists are targeting different immune system pathways to address interactions between tumors, the microenvironment and the immune system to further expand upon the progress we have made and help more patients respond to treatment. Combining these approaches is key to delivering potential new options for the treatment of cancer and addressing the growing issue of resistance to immunotherapy. We source innovation internally, and in collaboration with academia, government, advocacy groups and biotechnology companies, to help make the promise of transformational medicines a reality for patients.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol Myers Squibb’s scientific expertise in the field of Immuno-Oncology, and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

About Yervoy

Yervoy is a recombinant, human monoclonal antibody that binds to the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). CTLA-4 is a negative regulator of T-cell activity. Yervoy binds to CTLA-4 and blocks the interaction of CTLA-4 with its ligands, CD80/CD86. Blockade of CTLA-4 has been shown to augment T-cell activation and proliferation, including the activation and proliferation of tumor infiltrating T-effector cells. Inhibition of CTLA-4 signaling can also reduce T-regulatory cell function, which may contribute to a general increase in T-cell responsiveness, including the anti-tumor immune response. On March 25, 2011, the U.S. Food and Drug Administration (FDA) approved Yervoy 3 mg/kg monotherapy for patients with unresectable or metastatic melanoma. Yervoy is approved for unresectable or metastatic melanoma in more than 50 countries. There is a broad, ongoing development program in place for Yervoy spanning multiple tumor types.

U.S. FDA-Approved Indications

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (≥1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with intermediate or poor risk, previously untreated advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Important Safety Information

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not be inclusive of all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur at any time after starting or discontinuing YERVOY. Early identification and management are essential to ensure safe use of YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and before each dose. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue YERVOY depending on severity. In general, if YERVOY requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less followed by corticosteroid taper for at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reaction is not controlled with corticosteroid therapy. Institute hormone replacement therapy for endocrinopathies as warranted.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 6% (25/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 4.4% (24/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 1.7% (2/119) of patients. In NSCLC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%) immune-mediated pneumonitis. Four patients (0.7%) died due to pneumonitis. The incidence and severity of immune-mediated pneumonitis in patients with NSCLC treated with OPDIVO 360 mg every 3 weeks in combination with YERVOY 1 mg/kg every 6 weeks and 2 cycles of platinum-doublet chemotherapy were comparable to treatment with OPDIVO in combination with YERVOY only.

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 10% (52/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 7% (8/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated diarrhea/colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%).

Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Addition of an alternative immunosuppressive agent to the corticosteroid therapy, or replacement of the corticosteroid therapy, should be considered in corticosteroid-refractory immune-mediated colitis if other causes are excluded.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. For patients without HCC, withhold OPDIVO for Grade 2 and permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC, withhold OPDIVO and administer corticosteroids if AST/ALT is within normal limits at baseline and increases to >3 and up to 5 times the upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10 times the ULN. Permanently discontinue OPDIVO and administer corticosteroids if AST or ALT increases to >10 times the ULN or total bilirubin increases >3 times the ULN. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 13% (51/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 20% (10/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 7% (38/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 8% (10/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%).

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Withhold for Grades 2, 3, or 4 endocrinopathies if not clinically stable. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 9% (36/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 4% (2/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypophysitis occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hypophysitis occurred in 3.4% (4/119) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 5% (21/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 18% (9/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 7% (41/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 5.9% (7/119) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving this dose of OPDIVO with YERVOY. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (11/49) of patients. Hyperthyroidism occurred in 10% (5/49) of patients receiving this dose of OPDIVO with YERVOY. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (119/547) of patients. Hyperthyroidism occurred in 12% (66/547) of patients receiving this dose of OPDIVO with YERVOY. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 15% (18/119) of patients. Hyperthyroidism occurred in 12% (14/119) of patients. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, diabetes occurred in 1.5% (6/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, diabetes occurred in 2.7% (15/547) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, severe to life-threatening endocrinopathies occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 1.7% (2/119) of patients.

Immune-Mediated Skin and Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 22.6% (92/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 35% (17/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 16% (90/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 14% (17/119) of patients.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, Stevens Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous exfoliative rashes. Withhold YERVOY until specialist assessment for Grade 2 and permanently discontinue for Grade 3 or 4 exfoliative or bullous dermatologic conditions.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%).

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one melanoma patient receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg (0.2%) after 1.7 months of exposure. Encephalitis occurred in one RCC patient receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg (0.2%) after approximately 4 months of exposure. Encephalitis occurred in one MSI-H/dMMR mCRC patient (0.8%) receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg after 15 days of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of the adverse reaction, permanently discontinue or withhold OPDIVO, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Dose modifications for YERVOY for adverse reactions that require management different from these general guidelines are summarized as follows. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 neurological toxicities. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 myocarditis. Permanently discontinue YERVOY for Grade 2, 3, or 4 ophthalmologic adverse reactions that do not improve to Grade 1 within 2 weeks while receiving topical therapy OR that require systemic therapy. Across clinical trials of OPDIVO monotherapy or in combination with YERVOY, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1.0% of patients receiving OPDIVO: myocarditis, rhabdomyolysis, myositis, uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), motor dysfunction, vasculitis, aplastic anemia, pericarditis, and myasthenic syndrome. In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: autoimmune neuropathy (2%), meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis, nerve paresis, angiopathy, temporal arteritis, pancreatitis (1.3%), arthritis, polymyositis, conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis, blepharitis, episcleritis, orbital myositis, and scleritis. Some cases of ocular IMARs have been associated with retinal detachment.

If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been observed in patients receiving OPDIVO and YERVOY and may require treatment with systemic steroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO can cause severe infusion-related reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion-related reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. Severe infusion-related reactions can also occur with YERVOY. Discontinue YERVOY in patients with severe or life-threatening infusion reactions and interrupt or slow the rate of infusion in patients with mild or moderate infusion reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 4.2% (5/119) of patients.

In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg, infusion-related reactions occurred in 2.9% (28/982).

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with a PD-1 receptor blocking antibody or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between PD-1 or CTLA-4 receptor blockade and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with a PD-1 receptor blocking antibody or YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on mechanism of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO or YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from OPDIVO or YERVOY, advise women not to breastfeed during treatment and for at least 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (≥2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in ≥2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in ≥4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis.

Common Adverse Reactions

In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (≥20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, the most common adverse reactions (≥20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see U.S. Full Prescribing Information for OPDIVO and YERVOY.

CheckMate Trials and Patient Populations

Checkmate 067–previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 227–previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LA–previously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 214–previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 142–MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040–hepatocellular carcinoma, as a single agent or in combination with YERVOY

About the Bristol Myers Squibb and Ono Pharmaceutical Collaboration

In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Bristol Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally, except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Ono and Bristol Myers Squibb further expanded the companies’ strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies – as single agents and combination regimens – for patients with cancer in Japan, South Korea and Taiwan.

Adamis Pharmaceuticals Announces Pricing of Public Offering of Common Stock

On September 18, 2020 Adamis Pharmaceuticals Corporation (Nasdaq: ADMP), a specialty biopharmaceutical company focused on developing and commercializing products in various therapeutic areas, including allergy, opioid overdose, respiratory and inflammatory disease, reported the pricing of its previously announced underwritten public offering of 16,129,032 shares of its common stock at a public offering price of $0.62 per share, resulting in gross proceeds of approximately $10,000,000, before deducting underwriting discounts and commissions and other estimated offering expenses payable by the company (Press release, Adamis Pharmaceuticals, SEP 18, 2020, View Source [SID1234565360]). All shares of common stock to be sold in the public offering are being sold by Adamis.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The offering is expected to close on September 22, 2020, subject to the satisfaction of customary closing conditions. The company has also granted the underwriters a 30-day option to purchase up to 2,419,354 additional shares of its common stock to cover over-allotments, if any.

Raymond James & Associates, Inc. is acting as the sole book-running manager for the offering. Maxim Group LLC is acting as lead manager for the offering.

The company intends to use the net proceeds from this offering for general corporate purposes, which may include, without limitation, expenditures relating to research, development and clinical trials relating to its products and product candidates, manufacturing, capital expenditures, hiring additional personnel, acquisitions of new technologies or products, the payment, repayment, refinancing, redemption or repurchase of existing or future indebtedness, obligations or capital stock, and working capital.

The securities described above are being offered by the company pursuant to a "shelf" registration statement on Form S-3 (File No. 333-226100) previously filed with and declared effective by the Securities and Exchange Commission (the "SEC") on July 18, 2018. A preliminary prospectus supplement and the related prospectus have been filed with the SEC and are available on the SEC’s website at www.sec.gov. A final prospectus supplement and an accompanying prospectus related to the offering will be filed with the SEC and will be available on the SEC’s website located at www.sec.gov. When available, copies of the final prospectus supplement and the accompanying prospectus relating to this offering may be obtained by contacting Raymond James & Associates, Inc., Attention: Equity Syndicate, 880 Carillon Parkway, St. Petersburg, Florida, or by telephone at (800) 248-8863, or e-mail at [email protected].

Before investing in the offering, you should read in their entirety the prospectus supplement and the accompanying prospectus and the other documents that the company has filed with the SEC that are incorporated by reference in the prospectus supplement and the accompanying prospectus, which provide more information about the company and the offering.

This press release does not constitute an offer to sell or a solicitation of an offer to buy any securities described herein, nor shall there be any sale of these securities in any state or other jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction.

MIRATI THERAPEUTICS PRESENTS PHASE 2 DATA ON SITRAVATINIB IN COMBINATION WITH NIVOLUMAB IN UROTHELIAL CANCER AT ESMO VIRTUAL CONGRESS

On September 18, 2020 Mirati Therapeutics, Inc. (NASDAQ: MRTX), a clinical-stage targeted oncology company, reported updated clinical results from its Phase 2 study evaluating sitravatinib in combination with nivolumab (OPDIVO) in patients with advanced or metastatic urothelial carcinoma (Press release, Mirati, SEP 18, 2020, View Source [SID1234565359]). Sitravatinib is an investigational multi-targeted tyrosine kinase inhibitor that distinguishes itself by potently targeting the TAM (TYRO3, Axl, Mer) and split (VEGFR2, KIT) family receptors. The combination of sitravatinib with nivolumab demonstrated promising clinical activity in checkpoint inhibitor-naïve, platinum-refractory patients. These data were presented today in a mini oral session at the European Society for Medical Oncology Virtual Congress (ESMO) (Free ESMO Whitepaper) 2020 by Dr. Pavlos Msaouel, M.D., Ph.D.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The ongoing, Phase 2, open-label, multicenter trial in patients with advanced or metastatic urothelial carcinoma includes multiple patient cohorts that are defined based on prior therapy and platinum eligibility. Participants in the cohort updated today had been previously treated with platinum-containing chemotherapy but were checkpoint inhibitor naïve.

As of the data cut-off on July 30, 2020, 30 out of 40 patients enrolled in this checkpoint inhibitor-naïve, platinum-experienced cohort of the Phase 2 study were evaluable for response:

Findings showed an objective response rate of 37%, with 1 patient achieving a complete response (CR) and 10 patients achieving a partial response (PR: 8 confirmed, 2 unconfirmed) in this high-risk population (based on prognostic factors and baseline disease sites)
22/30 (73%) patients achieved clinical benefit (combination of CR plus PR plus stable disease)
Secondary efficacy endpoints continue to mature with a median follow-up of 8.7 months
"These data indicate that sitravatinib in combination with nivolumab resulted in a higher overall response rate, as well as longer preliminary progression free survival, when compared to what is generally seen with checkpoint inhibitors or similar tyrosine kinase inhibitor monotherapies in this setting," said Pavlos Msaouel, M.D., Ph.D., Assistant Professor, Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. "These data continue to show activity of the combination in this tumor setting and further demonstrate the ability of sitravatinib to augment the clinical activity of checkpoint inhibitors. We’re pleased by the strength of the combination response, and as the data mature over time, we will continue to evaluate the duration of response."

The sitravatinib and nivolumab combination has been well-tolerated and consistent with what has been previously reported in urothelial carcinoma and across other tumor settings.

The primary objective of the trial is to evaluate clinical activity as measured by objective response rate. Secondary objectives include evaluation of safety, tolerability, efficacy (including duration of response, clinical benefit rate, progression free survival and overall survival), and pharmacokinetics.

About Sitravatinib

Sitravatinib is an investigational spectrum-selective kinase inhibitor that potently inhibits receptor tyrosine kinases (RTKs), including TAM family receptors (TYRO3, Axl, Mer), split family receptors (VEGFR2, KIT) and RET. Sitravatinib is being evaluated in combination with nivolumab (OPDIVO), an anti-PD-1 checkpoint inhibitor, in patients whose cancers have progressed despite treatment with a checkpoint inhibitor. Sitravatinib’s potent inhibition of TAM and split family RTKs may overcome resistance to checkpoint inhibitor therapy through targeted reversal of an immunosuppressive tumor microenvironment, enhancing antigen-specific T cell response and expanding dendritic cell-dependent antigen presentation. Sitravatinib is being evaluated in multiple clinical trials to treat patients who are refractory to prior immune checkpoint inhibitor therapy, including the ongoing potentially registration-enabling Phase 3 trial of sitravatinib in combinations with a checkpoint inhibitor in non-small cell lung cancer (NSCLC). In addition, sitravatinib in combinations with checkpoint inhibitors are being evaluated in selected checkpoint inhibitor naïve patients.

LYNPARZA® (olaparib) Improved Median Progression-Free Survival to Over Four and a Half Years Compared to 13.8 Months with Placebo for Patients with BRCA-Mutated Advanced Ovarian Cancer

On September 18, 2020 AstraZeneca and Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported positive five-year follow-up data from the Phase 3 SOLO-1 trial which demonstrated a long-term progression-free survival (PFS) benefit of LYNPARZA versus placebo as a first-line maintenance treatment in patients with newly diagnosed, advanced BRCA-mutated (BRCAm) ovarian cancer who were in complete or partial response to platinum-based chemotherapy (Press release, AstraZeneca, SEP 18, 2020, View Source [SID1234565358]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Ovarian cancer is the eighth most common cause of cancer death in women worldwide and in 2018 there were nearly 300,000 new patients diagnosed and around 185,000 deaths globally. Approximately 22% of patients with ovarian cancer have a BRCA1/2 mutation.

Five-year follow-up data from the Phase 3 SOLO-1 trial showed LYNPARZA reduced the risk of disease progression or death by 67% (HR 0.33 [95% CI 0.25–0.43]), and improved median PFS to 56 months vs. 13.8 months for placebo. At five years, 48.3% of patients treated with LYNPARZA remained free from disease progression vs. 20.5% on placebo. The median duration of treatment with LYNPARZA was 24.6 months vs. 13.9 months with placebo. Median follow-up in the LYNPARZA arm was 4.8 years and 5 years for placebo.

The safety profile of LYNPARZA was consistent with previous observations in SOLO-1. The most common adverse reactions (ARs) ≥20% were nausea (77%), fatigue/asthenia (63%), vomiting (40%), anemia (39%) and diarrhea (34%). Grade 3 or greater ARs were reported in 40% of patients in the LYNPARZA arm with the most common being anemia (22%) and neutropenia (9%). ARs led to a dose interruption with LYNPARZA in 58% of patients and a dose reduction in 29% of patients. Twelve percent of patients on LYNPARZA discontinued treatment due to an AR.

Dr. Susana Banerjee, one of the investigators from the SOLO-1 trial and consultant medical oncologist at The Royal Marsden NHS Foundation Trust and reader at the Institute of Cancer Research, said, "For patients with newly diagnosed BRCA-mutated advanced ovarian cancer, the benefit derived from two years of maintenance treatment with LYNPARZA continued long after treatment ended. At five years, almost half of these women had not progressed and were still living with stable disease. These results represent a significant step forward in the treatment of BRCA-mutated advanced ovarian cancer."

Dr. José Baselga, executive vice president, oncology R&D, AstraZeneca, said, "Once a patient’s ovarian cancer recurs, it has historically been incurable. Even at an advanced stage, we have shown that maintenance treatment with LYNPARZA can help patients achieve sustained remission. Today’s results further underline the critical importance of identifying a patient’s biomarker status at the time of diagnosis to be able to offer a maintenance treatment that may help delay disease progression for these patients."

Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories, said, "This is the first trial of a PARP inhibitor to read out a five-year follow-up and showed LYNPARZA improved progression-free survival to over four and half years versus 13.8 months with placebo following response to first-line platinum-based chemotherapy. This latest data represents a major and significant milestone in a disease which has historically had such a poor prognosis."

Summary of efficacy results

Progression-Free Survival

(Primary Endpoint)

Recurrence-Free Survival*

(Post Hoc Analysis)

LYNPARZA

N=260

Placebo

N=131

LYNPARZA

N=189

Placebo

N=101

Events, n (%)

118 (45)

100 (76)

79 (42)

74 (73)

Median, m

56.0

13.8

NR

15.3

HR (95% CI)

0.33 (0.25–0.43)

0.37 (0.27–0.52)

Patients progression or recurrence free at timepoint, % (Kaplan-Meier estimates)

These analyses are descriptive only; the SOLO-1 trial was not powered to assess a

statistical difference between treatment groups at these time points

1y

87.7 (N=212)

51.4 (N=65)

91.0 (N=159)

58.0 (N=56)

2y

73.6 (N=173)

34.6 (N=41)

77.2 (N=132)

39.0 (N=35)

3y

60.1 (N=129)

26.9 (N=30)

64.0 (N=99)

28.9 (N=25)

4y

52.3 (N=101)

21.5 (N=23)

55.2 (N=75)

23.0 (N=19)

5y

48.3 (N=58)

20.5 (N=16)

51.9 (N=42)

21.8 (N=12)

*Defined post hoc as time from randomization to disease recurrence or death. Patients had complete response at baseline based on electronic case report form data. CI, confidence interval; HR, hazard ratio; NR, not reached

The results were presented on Friday, Sept. 18, 2020, at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) Virtual Congress 2020 (Abstract #811MO).

The Phase 3 SOLO-1 trial met the primary endpoint of PFS in June 2018, which formed the basis of approvals in the U.S., the EU, Japan, China and several other countries.

About SOLO-1

SOLO-1 was a Phase 3, randomized, double-blinded, placebo-controlled, multi-center trial to evaluate the efficacy and safety of LYNPARZA tablets (300 mg twice daily) as a maintenance monotherapy compared with placebo in newly diagnosed patients with BRCAm advanced ovarian cancer following response to first-line platinum-based chemotherapy. The trial randomized 391 patients with a deleterious or suspected deleterious germline or somatic BRCA1 or BRCA2 mutation who were in clinical complete or partial response following platinum-based chemotherapy.

Patients were randomized (2:1) to receive LYNPARZA or placebo for up to two years or until disease progression. Patients who had a partial response at two years were permitted to stay on therapy at the investigator’s discretion. The primary endpoint was investigator-assessed PFS and key secondary endpoints included time to second disease progression or death, time to first subsequent treatment and overall survival. The primary analysis results were presented at the 2018 ESMO (Free ESMO Whitepaper) Congress and published in The New England Journal of Medicine.

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS

Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females

Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males

Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.

ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/ nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONS—First-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab

Most common adverse reactions (Grades 1-4) in ≥10% of patients treated with LYNPARZA/bevacizumab compared to a ≥5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%) and leukopenia (18%). In addition, the most common adverse reactions (≥10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%), and headache (14%).

In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%), and decrease in platelets (35%).

ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONS—Advanced gBRCAm Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of

LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—gBRCAm, HER2-negative Metastatic Breast Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in >25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

ADVERSE REACTIONS—First-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).

DRUG INTERACTIONS

Anticancer Agents: Clinical studies of LYNPARZA with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid coadministration of strong or moderate CYP3A inhibitors when using LYNPARZA. If a strong or moderate CYP3A inhibitor must be coadministered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid coadministration of strong or moderate CYP3A inducers when using LYNPARZA.

USE IN SPECIFIC POPULATIONS

Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

INDICATIONS

LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance HRD-Positive Advanced Ovarian Cancer in Combination with Bevacizumab

In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

a deleterious or suspected deleterious BRCA mutation and/or
genomic instability
Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer

For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm Ovarian Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm HER2-negative Metastatic Breast Cancer

For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer, who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Please click here for complete Prescribing Information, including Patient Information (Medication Guide).

About LYNPARZA (olaparib)

LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as BRCA mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

About Ovarian Cancer

Ovarian cancer is the eighth most common cause of death from cancer in women worldwide. In 2018, there were nearly 300,000 new cases diagnosed globally, and around 185,000 deaths. For newly diagnosed patients with advanced ovarian cancer, the primary aim of first-line treatment is to delay progression of the disease for as long as possible.

About the AstraZeneca and Merck Strategic Oncology Collaboration

In July 2017, AstraZeneca and Merck, known as MSD outside the United States and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize certain oncology products including LYNPARZA, the world’s first PARP inhibitor, for multiple cancer types. Working together, the companies will develop these products in combination with other potential new medicines and as monotherapies. Independently, the companies will develop these oncology products in combination with their respective PD-L1 and PD-1 medicines.

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

Saniona to Participate in Oppenheimer’s Virtual 2020 Fall Healthcare Life Sciences & MedTech Summit

On September 18, 2020 Saniona (OMX: SANION), a clinical stage biopharmaceutical company focused on rare diseases, reported that Rami Levin, President and Chief Executive Officer of Saniona, will participate in a virtual fire side chat at the Oppenheimer & Co. Fall Healthcare Life Sciences & MedTech Summit being held September 21–23, 2020 (Press release, Saniona, SEP 18, 2020, View Source [SID1234565357]). Details on the virtual fire side chat are shown below .

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Oppenheimer & Co. 2020 Fall Healthcare Life Sciences & MedTech Summit

Date: Tuesday September 22, 2020

Time: 10:50 a.m. ET

Webcast Link: View Source

A live webcast of the fire side chat will be available in the Interviews & Webcasts section of the Saniona website found here: View Source After the live webcast, this event will remain archived on the Saniona website for approximately 90 days.