Chi-Med Highlights Surufatinib Phase III Results in Neuroendocrine Tumors at ESMO 2020 and Publications in The Lancet Oncology

On September 20, 2020 Hutchison China MediTech Limited ("Chi-Med") (Nasdaq/AIM: HCM) reported that positive results of the Phase III study of surufatinib in advanced neuroendocrine tumors – pancreatic ("SANET-p") were presented as a proffered paper session at the European Society for Medical Oncology ("ESMO") Virtual Congress 2020 (Abstract Number 1156O) (Press release, Hutchison China MediTech, SEP 20, 2020, https://www.chi-med.com/surufatinib-phase-iii-results-at-esmo-2020-and-publications-in-the-lancet-oncology/ [SID1234565388]). Results from SANET-p, in addition to previously presented results from Phase III study of surufatinib in advanced neuroendocrine tumors – extra-pancreatic ("SANET-ep"), are published today in The Lancet Oncology.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Surufatinib demonstrated statistically significant and clinically meaningful benefits in patients with advanced pancreatic NET. These results, combined with positive results from the parallel study of surufatinib in patients with non-pancreatic NET, support surufatinib as a promising treatment option for well-differentiated NET patients regardless of tumor origin," commented Dr. Jianming Xu, lead investigator for the SANET-p study, Head of the Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of the PLA in Beijing.

As announced in January 2020, the Independent Data Monitoring Committee ("IDMC") for the SANET-p trial recommended that the study stop early because it had met the pre-defined primary endpoint of progression free survival ("PFS") during a planned interim analysis. At data cut-off as of November 11, 2019, 172 patients were randomized 2:1 to treatment with either 300 mg of surufatinib orally daily (N=113) or placebo control (N=59), on a 28-day cycle. Median PFS was 10.9 months for patients treated with surufatinib, as compared to 3.7 months for patients in the placebo group (hazard ratio ["HR"] 0.491; 95% confidence interval ["CI"] 0.391-0.755; p=0.0011). Benefit was observed across most major subgroups of pNET patients. Objective response rates (ORR) were 19.2%[1] for the 104 efficacy evaluable patients in the surufatinib group versus 1.9%[2] for the 53 efficacy evaluable patients in the placebo group, with a disease control rate (DCR) of 80.8% versus 66.0%, respectively. Most patients in the trial had Grade 2 disease with heavy tumor burden, including liver metastasis and multiple organ involvement. Efficacy was also supported by Blinded Independent Image Review Committee (BIIRC) assessment, with a median PFS of 13.9 months for surufatinib as compared to 4.6 months for placebo (HR 0.339; 95% CI 0.209-0.549; p<0.0001).

The safety profile of surufatinib was manageable and consistent with observations in prior studies. Treatment was well tolerated for most patients, with discontinuation rates as a result of treatment emergent adverse events of 10.6% in the surufatinib group as compared to 6.8% in the placebo group.

In the U.S., the Food and Drug Administration ("FDA") granted surufatinib two Fast Track Designations, for both the non-pancreatic NET and pancreatic NET development programs, and Orphan Drug Designation for pancreatic NET development. A rolling new drug application ("NDA") submission is being prepared, to be followed by a marketing authorization application ("MAA") submission to the European Medicines Agency ("EMA") in Europe, based on the robust data from the two studies and the ongoing multi-cohort Phase Ib study in the U.S. In December 2019, an NDA for surufatinib for the treatment of patients with advanced non-pancreatic NET was granted Priority Review status by the China National Medical Products Administration ("NMPA"). A second NDA for surufatinib for the treatment of patients with advanced pancreatic NET has also been accepted by the NMPA.

About NET
NET form in cells that interact with the nervous system or in glands that produce hormones. They can originate in various parts of the body, most often in the gut or the lungs and can be benign or malignant. NET are typically classified as pancreatic NET or non-pancreatic NET. Approved targeted therapies include Sutent and Afinitor for pancreatic NET, or well-differentiated, non-functional gastrointestinal or lung NET.

According to Frost and Sullivan, there were 19,000 newly diagnosed cases of NET in the U.S. in 2018. Importantly, NET are associated with a relatively long duration of survival compared to other tumors. As a result, there were approximately 141,000 estimated patients living with NET in the U.S. in 2018.

In China, there were approximately 67,600 newly diagnosed NET patients in 2018 and, considering the current incidence to prevalence ratio in China, potentially as many as 300,000 patients living with the disease in the country.[3]

About Surufatinib
Surufatinib is a novel, oral angio-immuno kinase inhibitor that selectively inhibits the tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR), which both inhibit angiogenesis, and colony stimulating factor-1 receptor (CSF-1R), which regulates tumor-associated macrophages, promoting the body’s immune response against tumor cells. Its unique dual mechanism of action may be very suitable for possible combinations with other immunotherapies, where there may be synergistic anti-tumor effects.

Chi-Med currently retains all rights to surufatinib worldwide.

About Surufatinib Development
NET in the U.S. and Europe: In the U.S., surufatinib was granted Fast Track Designations for development in pancreatic and non-pancreatic (extra-pancreatic) NET in April 2020, and Orphan Drug Designation for pancreatic NET in November 2019. A U.S. FDA NDA submission is being prepared, to be followed by a MAA submission to the EMA in Europe. The basis to support these filings includes the completed SANET-ep and SANET-p studies, along with existing data from surufatinib in U.S. non-pancreatic and pancreatic NET patients (clinicaltrials.gov identifier: NCT02549937).

Non-pancreatic NET in China: In November 2019, a NDA for surufatinib for the treatment of patients with advanced non-pancreatic NET was accepted for review by the NMPA and granted Priority Review status in December 2019. The NDA is supported by data from the successful SANET-ep study, a Phase III study of surufatinib in patients with advanced non-pancreatic NET in China for whom there is no effective therapy. A 198-patient interim analysis was conducted in June 2019, leading the IDMC to determine that the study met the pre-defined primary endpoint of PFS and should be stopped early. The positive results of this trial were highlighted in an oral presentation at the 2019 ESMO (Free ESMO Whitepaper) Congress (clinicaltrials.gov identifier: NCT02588170) and published in The Lancet Oncology in September 2020.[4] Median PFS was 9.2 months for patients treated with surufatinib, as compared to 3.8 months for patients in the placebo group (HR 0.334; 95% CI: 0.223-0.499; p<0.0001).

Pancreatic NET in China: In 2016, we initiated the SANET-p study, which is a pivotal Phase III study in patients with low- or intermediate-grade, advanced pancreatic NET in China. Following an interim analysis review conducted in January 2020 by the IDMC that recommended the registrational study be terminated early as the pre-defined primary endpoint of PFS had already been met (clinicaltrials.gov identifier: NCT02589821), leading to a second NDA accepted by the China NMPA. The results of this study were presented at the ESMO (Free ESMO Whitepaper) Virtual Congress 2020 and published simultaneously in The Lancet Oncology.[5]

Biliary tract cancer in China: In March 2019, we initiated a Phase IIb/III study comparing surufatinib with capecitabine in patients with advanced biliary tract cancer whose disease progressed on first-line chemotherapy. The primary endpoint is overall survival (OS) (clinicaltrials.gov identifier NCT03873532).

Immunotherapy combinations: We have entered into collaboration agreements to evaluate the safety, tolerability and efficacy of surufatinib in combination with anti-PD-1 monoclonal antibodies, including with tislelizumab (BGB-A317, developed by BeiGene, Ltd.), Tuoyi (toripalimab, developed by Shanghai Junshi Biosciences Co. Ltd.) and Tyvyt (sintilimab, developed by Innovent Biologics, Inc.), which are approved in China.

Merck and Eisai Present First-Time Data From Two Studies Evaluating KEYTRUDA® (pembrolizumab) Plus LENVIMA® (lenvatinib) in Seven Different Tumor Types at ESMO Virtual Congress 2020

On September 20, 2020 Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Eisai reported new investigational data from two trials under the LEAP (LEnvatinib And Pembrolizumab) clinical program evaluating KEYTRUDA, Merck’s anti-PD-1 therapy, plus LENVIMA, the orally available multiple receptor tyrosine kinase inhibitor discovered by Eisai. In the Phase 2 LEAP-004 trial, KEYTRUDA plus LENVIMA showed an objective response rate (ORR) of 21.4% (95% CI: 13.9-30.5) in patients with unresectable or advanced melanoma who had previously progressed on an anti-PD-1/PD-L1 therapy. In the Phase 2 LEAP-005 trial, KEYTRUDA plus LENVIMA demonstrated an ORR that ranged from 9.7-32.3% (95% CI: 2.0-51.4) in previously treated patients with triple-negative breast cancer (TNBC), ovarian cancer, gastric cancer, colorectal cancer (non-microsatellite instability-high [non-MSI-H]/mismatch repair proficient [pMMR]), glioblastoma multiforme (GBM) and biliary tract cancer (BTC) . Results from LEAP-004 (Abstract #LBA44) and LEAP-005 (Abstract #LBA41) were accepted as late-breaking abstracts and are being presented in proffered paper presentations at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) Virtual Congress 2020.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"These new data from our LEAP clinical program show encouraging activity across several aggressive cancer types and expand our knowledge about the potential of KEYTRUDA plus LENVIMA to help a range of patients with these cancers"

Tweet this
"These new data from our LEAP clinical program show encouraging activity across several aggressive cancer types and expand our knowledge about the potential of KEYTRUDA plus LENVIMA to help a range of patients with these cancers," said Dr. Scot Ebbinghaus, Vice President, Clinical Research, Merck Research Laboratories. "This is the first time that clinical data from two LEAP trials are being presented, reflecting important progress we are making to explore the potential of this combination for patients in need of new options, particularly those with advanced melanoma who have progressed on an anti-PD-1 or PD-L1 therapy."

"We are encouraged by the growing body of research that we have seen to date, now in 13 different cancers, supporting the potential of the KEYTRUDA plus LENVIMA combination, which we’re currently evaluating in 19 clinical trials," said Dr. Takashi Owa, Chief Medicine Creation and Chief Discovery Officer, Oncology Business Group at Eisai. "These data not only help advance our understanding of the regimen but also fuel our deep-seated determination to work to address the unmet needs of these patients."

LEAP-004 Trial Design and Data (Abstract #LBA44)

LEAP-004 (ClinicalTrials.gov, NCT03776136) is a Phase 2, single-arm, open-label trial evaluating KEYTRUDA in combination with LENVIMA in patients with unresectable or advanced melanoma who had progressed on an anti-PD-1/PD-L1 therapy within 12 weeks. Patients were treated with LENVIMA 20 mg orally once daily until unacceptable toxicity or disease progression in combination with KEYTRUDA 200 mg intravenously every three weeks until unacceptable toxicity or disease progression for up to 35 cycles (approximately two years). The primary endpoint is ORR per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 as assessed by blinded independent central review (BICR). Secondary endpoints include progression-free survival (PFS) and duration of response (DOR) per RECIST v1.1 by BICR, overall survival (OS) and safety.

At data cutoff (June 10, 2020), a total of 103 patients were enrolled and treated. With a median duration of follow-up of 12 months (range: 8.7-15.6), KEYTRUDA plus LENVIMA demonstrated an overall ORR by BICR of 21.4% (n=22) (95% CI: 13.9-30.5), with a complete response rate of 1.9% (n=2) and a partial response rate of 19.4% (n=20). In the total study population, the median DOR was 6.3 months (range: 2.1+ to 11.1+), with 72.6% (95% CI: 46.2-87.6) of responses lasting for at least six months. Median PFS was 4.2 months (range: 3.5 to 6.3), with 73.8% of patients experiencing disease progression or death, and the nine-month PFS rate was 26.2% (95% CI: 17.4-35.9). Median OS was 13.9 months (range: 10.8-not reached [NR]), with death occurring in 44.7% of patients, and the nine-month OS rate was 65.4% (95% CI: 55.2-73.8).

The exploratory analysis showed that specifically in the 29 patients whose disease progressed after an anti-PD-1/L1 therapy plus an anti-CTLA-4 therapy, the ORR by BICR was 31.0% (95% CI: 15.3-50.8), with a complete response rate of 3.4% (n=1) and a partial response rate of 27.6% (n=8), and the disease control rate (DCR) by BICR was 62.1% (95% CI: 42.3-79.3). In the total study population, the DCR by BICR was 65.0% (95% CI: 55.0-74.2).

Treatment-related adverse events (TRAEs) led to discontinuation of KEYTRUDA and/or LENVIMA in 7.8% of patients. Grade 3-5 TRAEs occurred in 44.7% of patients (Grade 3: 39.8%; Grade 4: 3.9%; Grade 5: 1.0%), and serious TRAEs occurred in 18.4% of patients. The most common TRAEs of any grade occurring in at least 30% of the overall study population were hypertension (56.3%), diarrhea (35.9%), nausea (34.0%), hypothyroidism (33.0%) and decreased appetite (31.1%).

LEAP-005 Trial Design and Data (Abstract #LBA41)

LEAP-005 (ClinicalTrials.gov, NCT03797326) is a Phase 2, single-arm, open-label trial evaluating KEYTRUDA in combination with LENVIMA in patients with select previously treated advanced solid tumors. The study cohorts are TNBC, ovarian cancer, gastric cancer, colorectal cancer (non-MSI-H/pMMR), GBM and BTC. Patients were treated with LENVIMA 20 mg orally once daily until unacceptable toxicity or disease progression in combination with KEYTRUDA 200 mg intravenously every three weeks until unacceptable toxicity or disease progression for up to 35 cycles (approximately two years). The primary endpoints are ORR per RECIST v1.1 as assessed by BICR or Response Assessment in Neuro-Oncology (RANO) criteria (for GBM only) as assessed by BICR, and safety. Secondary endpoints include DCR per RECIST v1.1 by BICR or RANO (for GBM only) by BICR, DOR per RECIST v1.1 by BICR or RANO (for GBM only) by BICR, PFS per RECIST v1.1 by BICR or RANO (for GBM only) by BICR, and OS.

At data cutoff (April 10, 2020), a total of 187 patients were enrolled and treated. The confirmed ORR after a median duration of follow-up of 8.6 months (range: 1.9-13.1) for the six different tumor types, as well as additional efficacy and safety results, showed:

2L/3L TNBC

(n=31)

4L
Ovarian

(n=31)

3L Gastric

(n=31)

3L Colorectal

(n=32)

2L
BTC

(n=31)

2L
GBM

(n=31)

ORR, %
(95% CI)

29.0 (14.2-48.0)

32.3 (16.7-51.4)

9.7 (2.0-25.8)

21.9 (9.3-40.0)

9.7 (2.0-25.8)

16.1 (5.5-33.7)

DCR, %
(95% CI)

58.1 (39.1-75.5)

74.2 (55.4-88.1)

48.4 (30.2-66.9)

46.9 (29.1-65.3)

67.7 (48.6-83.3)

58.1 (39.1-75.5)

DOR, median (range), months

NR (0.0+ to 8.4+)

NR (1.5+ to 7.9+)

NR (2.1+ to 2.3+)

NR (2.1+ to 10.4+)

5.3 (2.1+ to 6.2)

3.2 (2.5 to 4.9+)

Grade ≥3 TRAEs, % (n)

55 (17)

68 (21)

42 (13)

50 (16)

48 (15)

35 (11)

Death due to a TRAE, % (n)

3 (1)

3 (1)

3 (1)

3 (1)

0 (0)

3 (1)

Discontinued due to a TRAE, % (n)

10 (3)

13 (4)

6 (2)

9 (3)

6 (2)

6 (2)

+, no progressive disease (PD) as of last disease assessment; DCR, disease control rate (best confirmed response: complete/partial response; stable disease); DOR, duration of response; NR, not reached

The most common TRAEs of any grade occurring in at least 20% of the overall study population were hypertension (39.0%), fatigue (29.4%), diarrhea (26.7%), decreased appetite (25.1%), hypothyroidism (27.8%) and nausea (21.9%). The study is ongoing and will be expanded to enroll approximately 100 patients in each cohort.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) ≥10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Endometrial Carcinoma

KEYTRUDA, in combination with LENVIMA, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial.

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Selected Important Safety Information for KEYTRUDA (pembrolizumab)

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (≥1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

In KEYNOTE-146, when KEYTRUDA was administered in combination with LENVIMA to patients with endometrial carcinoma (n=94), fatal adverse reactions occurred in 3% of patients. Serious adverse reactions occurred in 52% of patients, the most common (≥3%) were hypertension (9%), abdominal pain (6%), musculoskeletal pain (5%), hemorrhage, fatigue, nausea, confusional state, and pleural effusion (4% each), adrenal insufficiency, colitis, dyspnea, and pyrexia (3% each).

KEYTRUDA was discontinued for adverse reactions (Grade 1-4) in 19% of patients, regardless of action taken with LENVIMA; the most common (≥2%) leading to discontinuation of KEYTRUDA were adrenal insufficiency, colitis, pancreatitis, and muscular weakness (2% each).

The most common adverse reactions (≥20%) observed with KEYTRUDA in combination with LENVIMA were fatigue, musculoskeletal pain and hypertension (65% each), diarrhea (64%), decreased appetite (52%), hypothyroidism (51%), nausea (48%), stomatitis (43%), vomiting (39%), decreased weight (36%), abdominal pain and headache (33% each), constipation (32%), urinary tract infection (31%), dysphonia (29%), hemorrhagic events (28%), hypomagnesemia (27%), palmar-plantar erythrodysesthesia syndrome (26%), dyspnea (24%), and cough and rash (21% each).

Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

Adverse reactions occurring in patients with cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Lactation

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use

There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

Please see Prescribing Information for KEYTRUDA (pembrolizumab) at View Source and Medication Guide for KEYTRUDA at View Source

About LENVIMA (lenvatinib)

LENVIMA (lenvatinib) is a kinase inhibitor that is indicated:

For the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer (RAI-refractory DTC)
In combination with everolimus, for the treatment of patients with advanced renal cell carcinoma (RCC) following one prior anti-angiogenic therapy
For the first-line treatment of patients with unresectable hepatocellular carcinoma (HCC)
In combination with KEYTRUDA, for the treatment of patients with advanced endometrial carcinoma that is not microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR), who have disease progression following prior systemic therapy, and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial
LENVIMA, discovered and developed by Eisai, is a kinase inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). LENVIMA inhibits other kinases that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1-4, the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. In syngeneic mouse tumor models, lenvatinib decreased tumor-associated macrophages, increased activated cytotoxic T cells, and demonstrated greater antitumor activity in combination with an anti-PD-1 monoclonal antibody compared to either treatment alone.

Selected Safety Information

Warnings and Precautions

Hypertension. In DTC, hypertension occurred in 73% of patients on LENVIMA (44% grade 3-4). In RCC, hypertension occurred in 42% of patients on LENVIMA + everolimus (13% grade 3). Systolic blood pressure ≥160 mmHg occurred in 29% of patients, and 21% had diastolic blood pressure ≥100 mmHg. In HCC, hypertension occurred in 45% of LENVIMA-treated patients (24% grade 3). Grade 4 hypertension was not reported in HCC.

Serious complications of poorly controlled hypertension have been reported. Control blood pressure prior to initiation. Monitor blood pressure after 1 week, then every 2 weeks for the first 2 months, and then at least monthly thereafter during treatment. Withhold and resume at reduced dose when hypertension is controlled or permanently discontinue based on severity.

Cardiac Dysfunction. Serious and fatal cardiac dysfunction can occur with LENVIMA. Across clinical trials in 799 patients with DTC, RCC, and HCC, grade 3 or higher cardiac dysfunction occurred in 3% of LENVIMA treated patients. Monitor for clinical symptoms or signs of cardiac dysfunction. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Arterial Thromboembolic Events. Among patients receiving LENVIMA or LENVIMA + everolimus, arterial thromboembolic events of any severity occurred in 2% of patients in RCC and HCC and 5% in DTC. Grade 3-5 arterial thromboembolic events ranged from 2% to 3% across all clinical trials. Permanently discontinue following an arterial thrombotic event. The safety of resuming after an arterial thromboembolic event has not been established and LENVIMA has not been studied in patients who have had an arterial thromboembolic event within the previous 6 months.

Hepatotoxicity. Across clinical studies enrolling 1,327 LENVIMA-treated patients with malignancies other than HCC, serious hepatic adverse reactions occurred in 1.4% of patients. Fatal events, including hepatic failure, acute hepatitis and hepatorenal syndrome, occurred in 0.5% of patients. In HCC, hepatic encephalopathy occurred in 8% of LENVIMA-treated patients (5% grade 3-5). Grade 3-5 hepatic failure occurred in 3% of LENVIMA-treated patients. 2% of patients discontinued LENVIMA due to hepatic encephalopathy and 1% discontinued due to hepatic failure.

Monitor liver function prior to initiation, then every 2 weeks for the first 2 months, and at least monthly thereafter during treatment. Monitor patients with HCC closely for signs of hepatic failure, including hepatic encephalopathy. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Renal Failure or Impairment. Serious including fatal renal failure or impairment can occur with LENVIMA. Renal impairment was reported in 14% and 7% of LENVIMA-treated patients in DTC and HCC, respectively. Grade 3-5 renal failure or impairment occurred in 3% of patients with DTC and 2% of patients with HCC, including 1 fatal event in each study. In RCC, renal impairment or renal failure was reported in 18% of LENVIMA + everolimus–treated patients (10% grade 3).

Initiate prompt management of diarrhea or dehydration/hypovolemia. Withhold and resume at reduced dose upon recovery or permanently discontinue for renal failure or impairment based on severity.

Proteinuria. In DTC and HCC, proteinuria was reported in 34% and 26% of LENVIMA-treated patients, respectively. Grade 3 proteinuria occurred in 11% and 6% in DTC and HCC, respectively. In RCC, proteinuria occurred in 31% of patients receiving LENVIMA + everolimus (8% grade 3). Monitor for proteinuria prior to initiation and periodically during treatment. If urine dipstick proteinuria ≥2+ is detected, obtain a 24-hour urine protein. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Diarrhea. Of the 737 LENVIMA-treated patients in DTC and HCC, diarrhea occurred in 49% (6% grade 3). In RCC, diarrhea occurred in 81% of LENVIMA + everolimus–treated patients (19% grade 3). Diarrhea was the most frequent cause of dose interruption/reduction, and diarrhea recurred despite dose reduction. Promptly initiate management of diarrhea. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Fistula Formation and Gastrointestinal Perforation. Of the 799 patients treated with LENVIMA or LENVIMA + everolimus in DTC, RCC, and HCC, fistula or gastrointestinal perforation occurred in 2%. Permanently discontinue in patients who develop gastrointestinal perforation of any severity or grade 3-4 fistula.

QT Interval Prolongation. In DTC, QT/QTc interval prolongation occurred in 9% of LENVIMA-treated patients and QT interval prolongation of >500 ms occurred in 2%. In RCC, QTc interval increases of >60 ms occurred in 11% of patients receiving LENVIMA + everolimus and QTc interval >500 ms occurred in 6%. In HCC, QTc interval increases of >60 ms occurred in 8% of LENVIMA-treated patients and QTc interval >500 ms occurred in 2%.

Monitor and correct electrolyte abnormalities at baseline and periodically during treatment. Monitor electrocardiograms in patients with congenital long QT syndrome, congestive heart failure, bradyarrhythmias, or those who are taking drugs known to prolong the QT interval, including Class Ia and III antiarrhythmics. Withhold and resume at reduced dose upon recovery based on severity.

Hypocalcemia. In DTC, grade 3-4 hypocalcemia occurred in 9% of LENVIMA-treated patients. In 65% of cases, hypocalcemia improved or resolved following calcium supplementation with or without dose interruption or dose reduction. In RCC, grade 3-4 hypocalcemia occurred in 6% of LENVIMA + everolimus– treated patients. In HCC, grade 3 hypocalcemia occurred in 0.8% of LENVIMA-treated patients. Monitor blood calcium levels at least monthly and replace calcium as necessary during treatment. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity.

Reversible Posterior Leukoencephalopathy Syndrome. Across clinical studies of 1,823 patients who received LENVIMA as a single agent, RPLS occurred in 0.3%. Confirm diagnosis of RPLS with MRI. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity and persistence of neurologic symptoms.

Hemorrhagic Events. Serious including fatal hemorrhagic events can occur with LENVIMA. In DTC, RCC, and HCC clinical trials, hemorrhagic events, of any grade, occurred in 29% of the 799 patients treated with LENVIMA as a single agent or in combination with everolimus. The most frequently reported hemorrhagic events (all grades and occurring in at least 5% of patients) were epistaxis and hematuria. In DTC, grade 3-5 hemorrhage occurred in 2% of LENVIMA-treated patients, including 1 fatal intracranial hemorrhage among 16 patients who received LENVIMA and had CNS metastases at baseline. In RCC, grade 3-5 hemorrhage occurred in 8% of LENVIMA + everolimus–treated patients, including 1 fatal cerebral hemorrhage. In HCC, grade 3-5 hemorrhage occurred in 5% of LENVIMA-treated patients, including 7 fatal hemorrhagic events. Serious tumor-related bleeds, including fatal hemorrhagic events, occurred in LENVIMA-treated patients in clinical trials and in the postmarketing setting. In postmarketing surveillance, serious and fatal carotid artery hemorrhages were seen more frequently in patients with anaplastic thyroid carcinoma (ATC) than other tumors. Safety and effectiveness of LENVIMA in patients with ATC have not been demonstrated in clinical trials.

Consider the risk of severe or fatal hemorrhage associated with tumor invasion or infiltration of major blood vessels (e.g., carotid artery). Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Impairment of Thyroid Stimulating Hormone Suppression/Thyroid Dysfunction. LENVIMA impairs exogenous thyroid suppression. In DTC, 88% of patients had baseline thyroid stimulating hormone (TSH) level ≤0.5 mU/L. In patients with normal TSH at baseline, elevation of TSH level >0.5 mU/L was observed post baseline in 57% of LENVIMA-treated patients. In RCC and HCC, grade 1 or 2 hypothyroidism occurred in 24% of LENVIMA + everolimus–treated patients and 21% of LENVIMA-treated patients, respectively. In patients with normal or low TSH at baseline, elevation of TSH was observed post baseline in 70% of LENVIMA-treated patients in HCC and 60% of LENVIMA + everolimus–treated patients in RCC.

Monitor thyroid function prior to initiation and at least monthly during treatment. Treat hypothyroidism according to standard medical practice.

Impaired Wound Healing. Impaired wound healing has been reported in patients who received LENVIMA. Withhold LENVIMA for at least 1 week prior to elective surgery. Do not administer for at least 2 weeks following major surgery and until adequate wound healing. The safety of resumption of LENVIMA after resolution of wound healing complications has not been established.

Embryo-fetal Toxicity. Based on its mechanism of action and data from animal reproduction studies, LENVIMA can cause fetal harm when administered to pregnant women. In animal reproduction studies, oral administration of lenvatinib during organogenesis at doses below the recommended clinical doses resulted in embryotoxicity, fetotoxicity, and teratogenicity in rats and rabbits. Advise pregnant women of the potential risk to a fetus; and advise females of reproductive potential to use effective contraception during treatment with LENVIMA and for at least 30 days after the last dose.

Adverse Reactions

In DTC, the most common adverse reactions (≥30%) observed in LENVIMA-treated patients were hypertension (73%), fatigue (67%), diarrhea (67%), arthralgia/myalgia (62%), decreased appetite (54%), decreased weight (51%), nausea (47%), stomatitis (41%), headache (38%), vomiting (36%), proteinuria (34%), palmar-plantar erythrodysesthesia syndrome (32%), abdominal pain (31%), and dysphonia (31%). The most common serious adverse reactions (≥2%) were pneumonia (4%), hypertension (3%), and dehydration (3%). Adverse reactions led to dose reductions in 68% of LENVIMA-treated patients; 18% discontinued LENVIMA. The most common adverse reactions (≥10%) resulting in dose reductions were hypertension (13%), proteinuria (11%), decreased appetite (10%), and diarrhea (10%); the most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were hypertension (1%) and asthenia (1%).

In RCC, the most common adverse reactions (≥30%) observed in LENVIMA + everolimus–treated patients were diarrhea (81%), fatigue (73%), arthralgia/myalgia (55%), decreased appetite (53%), vomiting (48%), nausea (45%), stomatitis (44%), hypertension (42%), peripheral edema (42%), cough (37%), abdominal pain (37%), dyspnea (35%), rash (35%), decreased weight (34%), hemorrhagic events (32%), and proteinuria (31%). The most common serious adverse reactions (≥5%) were renal failure (11%), dehydration (10%), anemia (6%), thrombocytopenia (5%), diarrhea (5%), vomiting (5%), and dyspnea (5%). Adverse reactions led to dose reductions or interruption in 89% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were diarrhea (21%), fatigue (8%), thrombocytopenia (6%), vomiting (6%), nausea (5%), and proteinuria (5%). Treatment discontinuation due to an adverse reaction occurred in 29% of patients.

In HCC, the most common adverse reactions (≥20%) observed in LENVIMA-treated patients were hypertension (45%), fatigue (44%), diarrhea (39%), decreased appetite (34%), arthralgia/myalgia (31%), decreased weight (31%), abdominal pain (30%), palmar-plantar erythrodysesthesia syndrome (27%), proteinuria (26%), dysphonia (24%), hemorrhagic events (23%), hypothyroidism (21%), and nausea (20%). The most common serious adverse reactions (≥2%) were hepatic encephalopathy (5%), hepatic failure (3%), ascites (3%), and decreased appetite (2%). Adverse reactions led to dose reductions or interruption in 62% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were fatigue (9%), decreased appetite (8%), diarrhea (8%), proteinuria (7%), hypertension (6%), and palmar-plantar erythrodysesthesia syndrome (5%). Treatment discontinuation due to an adverse reaction occurred in 20% of patients. The most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were fatigue (1%), hepatic encephalopathy (2%), hyperbilirubinemia (1%), and hepatic failure (1%).

In EC, the most common adverse reactions (≥20%) observed in LENVIMA + pembrolizumab – treated patients were fatigue (65%), hypertension (65%), musculoskeletal pain (65%), diarrhea (64%), decreased appetite (52%), hypothyroidism (51%), nausea (48%), stomatitis (43%), vomiting (39%), decreased weight (36%), abdominal pain (33%), headache (33%), constipation (32%), urinary tract infection (31%), dysphonia (29%), hemorrhagic events (28%), hypomagnesemia (27%), palmar-plantar erythrodysesthesia (26%), dyspnea (24%), cough (21%) and rash (21%).

Adverse reactions led to dose reduction or interruption in 88% of patients receiving LENVIMA. The most common adverse reactions (≥5%) resulting in dose reduction or interruption of LENVIMA were fatigue (32%), hypertension (26%), diarrhea (18%), nausea (13%), palmar-plantar erythrodysesthesia (13%), vomiting (13%), decreased appetite (12%), musculoskeletal pain (11%), stomatitis (9%), abdominal pain (7%), hemorrhages (7%), renal impairment (6%), decreased weight (6%), rash (5%), headache (5%), increased lipase (5%) and proteinuria (5%).

Fatal adverse reactions occurred in 3% of patients receiving LENVIMA + pembrolizumab, including gastrointestinal perforation, RPLS with intraventricular hemorrhage, and intracranial hemorrhage.

Serious adverse reactions occurred in 52% of patients receiving LENVIMA + pembrolizumab. Serious adverse reactions in ≥3% of patients were hypertension (9%), abdominal pain (6%), musculoskeletal pain (5%), hemorrhage (4%), fatigue (4%), nausea (4%), confusional state (4%), pleural effusion (4%), adrenal insufficiency (3%), colitis (3%), dyspnea (3%), and pyrexia (3%).

Permanent discontinuation due to adverse reaction (Grade 1-4) occurred in 21% of patients who received LENVIMA + pembrolizumab. The most common adverse reactions (>2%) resulting in discontinuation of LENVIMA were gastrointestinal perforation or fistula (2%), muscular weakness (2%), and pancreatitis (2%).

Use in Specific Populations

Because of the potential for serious adverse reactions in breastfed infants, advise women to discontinue breastfeeding during treatment and for at least 1 week after last dose. LENVIMA may impair fertility in males and females of reproductive potential.

No dose adjustment is recommended for patients with mild (CLcr 60-89 mL/min) or moderate (CLcr 30-59 mL/min) renal impairment. LENVIMA concentrations may increase in patients with DTC, RCC or EC and severe (CLcr 15-29 mL/min) renal impairment. Reduce the dose for patients with DTC, RCC, or EC and severe renal impairment. There is no recommended dose for patients with HCC and severe renal impairment. LENVIMA has not been studied in patients with end stage renal disease. No dose adjustment is recommended for patients with HCC and mild hepatic impairment (Child-Pugh A). There is no recommended dose for patients with HCC with moderate (Child-Pugh B) or severe (Child-Pugh C) hepatic impairment.

No dose adjustment is recommended for patients with DTC, RCC, or EC and mild or moderate hepatic impairment. LENVIMA concentrations may increase in patients with DTC, RCC, or EC and severe hepatic impairment. Reduce the dose for patients with DTC, RCC, or EC and severe hepatic impairment.

LENVIMA (lenvatinib) is available as 10 mg and 4 mg capsules.

Please see Prescribing Information for LENVIMA (lenvatinib) at View Source

About the Eisai and Merck Strategic Collaboration

In March 2018, Eisai and Merck, known as MSD outside the United States and Canada, through an affiliate, entered into a strategic collaboration for the worldwide co-development and co-commercialization of LENVIMA. Under the agreement, the companies will jointly develop, manufacture and commercialize LENVIMA, both as monotherapy and in combination with Merck’s anti-PD-1 therapy KEYTRUDA.

In addition to ongoing clinical studies evaluating the KEYTRUDA plus LENVIMA combination across several different tumor types, the companies have jointly initiated new clinical studies through the LEAP (LEnvatinib And Pembrolizumab) clinical program and are evaluating the combination in 13 different tumor types (endometrial carcinoma, hepatocellular carcinoma, melanoma, non-small cell lung cancer, renal cell carcinoma, squamous cell carcinoma of the head and neck, urothelial cancer, biliary tract cancer, colorectal cancer, gastric cancer, glioblastoma, ovarian cancer and triple-negative breast cancer) across 19 clinical trials.

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

Verzenio® Significantly Reduced the Risk of Cancer Recurrence by 25% for People with HR+, HER2- High Risk Early Breast Cancer

On September 20, 2020 Eli Lilly and Company (NYSE: LLY) reported Verzenio (abemaciclib) in combination with standard adjuvant endocrine therapy (ET) significantly decreased the risk of breast cancer recurrence by 25 percent compared to standard adjuvant ET alone for people with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) high risk early breast cancer (HR: 0.747; 95% CI: 0.598, 0.932; p = 0.0096). This statistically significant benefit was consistent across all pre-specified subgroups and corresponds to a 3.5 percent difference between arms (92.2 percent in the Verzenio arm and 88.7 percent in the control arm) at two years. These results are from a preplanned interim analysis with 323 IDFS events observed in the intent-to-treat population across both arms, including 136 in the Verzenio arm and 187 in the control arm. The data were presented today in the Presidential Symposium at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) 2020 Virtual Congress and simultaneously published in the Journal of Clinical Oncology.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Safety data from monarchE were consistent with the known safety profile of Verzenio and no new safety signals were observed. At the time of analysis, approximately 70 percent of patients in each arm were still on the two-year treatment period. The median follow up was approximately 15.5 months in both arms. The median duration on Verzenio was 14 months.

"This is a major milestone for people living with high risk HR+, HER2- early breast cancer – potentially one of the most notable treatment advances in the last two decades for this population of breast cancer patients," said Stephen Johnston, M.D., Ph.D., Professor of Breast Cancer Medicine and Consultant Medical Oncologist at The Royal Marsden NHS Foundation Trust (London, U.K.) and lead investigator for the monarchE trial. "Abemaciclib added to adjuvant endocrine therapy significantly improved invasive disease-free survival in women and men with HR+, HER2- early breast cancer at high risk of early recurrence, and if approved could represent a new standard of care for this population."

monarchE randomized 5,637 patients with HR+, HER2- high risk early breast cancer from more than 600 sites in 38 countries. High risk was defined by cancer that spread to the lymph nodes, a large tumor size, or high cellular proliferation (as determined by tumor grade or Ki-67 index). Patients were treated for two years (treatment period) or until meeting criteria for discontinuation. After the treatment period, all patients will continue ET for five to 10 years, as clinically indicated.

"We are excited that Verzenio has demonstrated a clinically meaningful reduction in the risk of recurrence for people with HR+, HER2- high risk early breast cancer, and Lilly would like to thank the patients and investigators around the world who made this trial possible," said Maura Dickler, M.D., vice president, late phase development, Lilly Oncology. "The results on invasive disease-free survival are significant and provide hope for people with high risk early breast cancer living with concerns of recurrence. Lilly will submit these results to regulatory bodies around the world as soon as possible and we look forward to being able to offer Verzenio as a new treatment option for these patients. We are proud of the way monarchE builds on the vast body of clinical evidence established for Verzenio."

The addition of Verzenio to endocrine therapy also resulted in an improvement in distant relapse-free survival, or the time to developing cancer that has spread to other parts of the body. The combination reduced the risk of developing metastatic disease by 28 percent (HR: 0.717; 95% CI: 0.559, 0.920), with the largest reductions occurring in rates of metastases to the liver and bone. This treatment benefit was consistent across all prespecified subgroups. Two-year distant relapse-free survival rates were 93.6 percent in the Verzenio arm and 90.3 percent in the control arm.

"The results of monarchE are welcome news for our community," said Jean Sachs, MSS, MLSP, CEO of Living Beyond Breast Cancer. "Up to 30 percent of people with hormone receptor-positive early breast cancer may have a recurrence, so this finding is an exciting development for those with high risk hormone receptor-positive, HER2- early breast cancer, especially because the trial included women of any menopausal status as well as men."

Overall survival results were immature and monarchE will continue through the completion date, estimated for June 2027. At the time of the interim analysis, the IDFS results are considered definitive. All patients on monarchE will be followed until primary analysis and beyond to assess overall survival and other endpoints. Lilly will submit the monarchE data to regulatory authorities before the end of 2020.

About the monarchE Study
monarchE is a Phase 3, multicenter, randomized, open-label trial that enrolled 5,637 patients with HR+, HER2- node-positive, high risk early breast cancer. Patients were randomized 1:1 to Verzenio (150 mg twice daily) plus standard adjuvant endocrine therapy or standard adjuvant endocrine therapy alone. Patients were treated for two years (treatment period) or until meeting criteria for discontinuation. After the treatment period, all patients will continue on endocrine therapy for five to 10 years, as clinically indicated. The primary objective is invasive disease-free survival (IDFS) defined according to the Standard Definitions for Efficacy Endpoints (STEEP) criteria. In adjuvant breast cancer trials, this includes the length of time before any cancer comes back, a new cancer develops or death. Secondary objectives include distant relapse-free survival, overall survival, safety, pharmacokinetics and health outcomes.

High risk was specifically defined as women (any menopausal status) and men with resected HR+, HER2- invasive early breast cancer with either ≥4 pathologically positive axillary lymph nodes (ALNs) or 1 to 3 positive ALNs and at least one of the following high-risk features: primary invasive tumor size ≥5 cm, histological grade 3 tumor, or central Ki-67 index ≥20%. If applicable, patients must have also completed adjuvant chemotherapy and radiotherapy prior to enrolling and have recovered from all acute side effects.

About Early Breast Cancer
Breast cancer is the most common cancer among women worldwide.1 An estimated 90 percent of all breast cancer is diagnosed at an early stage.2 Approximately 70 percent of all breast cancers are HR+, HER2-, the most common subtype.3 Even within this subtype, HR+, HER2- breast cancer is a complex disease, and many factors – such as if the cancer has spread to the lymph nodes and the biology of the tumor – can impact the risk of recurrence. Approximately 30 percent of people diagnosed with HR+ early breast cancer are at risk of their cancer returning, potentially to incurable metastatic disease.4

About Verzenio (abemaciclib)
Verzenio (abemaciclib) is an inhibitor of cyclin-dependent kinases (CDK)4 & 6, which are activated by binding to D-cyclins. In estrogen receptor-positive (ER+) breast cancer cell lines, cyclin D1 and CDK4 & 6 promote phosphorylation of the retinoblastoma protein (Rb), cell cycle progression, and cell proliferation.

In vitro, continuous exposure to Verzenio inhibited Rb phosphorylation and blocked progression from G1 to S phase of the cell cycle, resulting in senescence and apoptosis (cell death). Preclinically, Verzenio dosed daily without interruption resulted in reduction of tumor size. Inhibiting CDK4 & 6 in healthy cells can result in side effects, some of which may be serious. Clinical evidence also suggests that Verzenio crosses the blood-brain barrier. In patients with advanced cancer, including breast cancer, concentrations of Verzenio and its active metabolites (M2 and M20) in cerebrospinal fluid are comparable to unbound plasma concentrations.

Verzenio is Lilly’s first solid oral dosage form to be made using a faster, more efficient process known as continuous manufacturing. Continuous manufacturing is a new and advanced type of manufacturing within the pharmaceutical industry, and Lilly is one of the first companies to use this technology.

INDICATION
Verzenio is indicated for the treatment of HR+, HER2- advanced or metastatic breast cancer:

in combination with an aromatase inhibitor for postmenopausal women as initial endocrine-based therapy
in combination with fulvestrant for women with disease progression following endocrine therapy
as a single agent for adult patients with disease progression following endocrine therapy and prior chemotherapy in the metastatic setting
IMPORTANT SAFETY INFORMATION FOR VERZENIO (abemaciclib)

Diarrhea occurred in 81% of patients receiving Verzenio plus an aromatase inhibitor in MONARCH 3, 86% of patients receiving Verzenio plus fulvestrant in MONARCH 2 and 90% of patients receiving Verzenio alone in MONARCH 1. Grade 3 diarrhea occurred in 9% of patients receiving Verzenio plus an aromatase inhibitor in MONARCH 3, 13% of patients receiving Verzenio plus fulvestrant in MONARCH 2 and in 20% of patients receiving Verzenio alone in MONARCH 1. Episodes of diarrhea have been associated with dehydration and infection.

Diarrhea incidence was greatest during the first month of Verzenio dosing. In MONARCH 3, the median time to onset of the first diarrhea event was 8 days, and the median duration of diarrhea for Grades 2 and 3 were 11 and 8 days, respectively. In MONARCH 2, the median time to onset of the first diarrhea event was 6 days, and the median duration of diarrhea for Grades 2 and 3 were 9 days and 6 days, respectively. In MONARCH 3, 19% of patients with diarrhea required a dose omission and 13% required a dose reduction. In MONARCH 2, 22% of patients with diarrhea required a dose omission and 22% required a dose reduction. The time to onset and resolution for diarrhea were similar across MONARCH 3, MONARCH 2, and MONARCH 1.

Instruct patients that at the first sign of loose stools, they should start antidiarrheal therapy such as loperamide, increase oral fluids, and notify their healthcare provider for further instructions and appropriate follow-up. For Grade 3 or 4 diarrhea, or diarrhea that requires hospitalization, discontinue Verzenio until toxicity resolves to ≤Grade 1, and then resume Verzenio at the next lower dose.

Neutropenia occurred in 41% of patients receiving Verzenio plus an aromatase inhibitor in MONARCH 3, 46% of patients receiving Verzenio plus fulvestrant in MONARCH 2 and 37% of patients receiving Verzenio alone in MONARCH 1. A Grade ≥3 decrease in neutrophil count (based on laboratory findings) occurred in 22% of patients receiving Verzenio plus an aromatase inhibitor in MONARCH 3, 32% of patients receiving Verzenio plus fulvestrant in MONARCH 2 and in 27% of patients receiving Verzenio alone in MONARCH 1. In MONARCH 3, the median time to first episode of Grade ≥3 neutropenia was 33 days, and in MONARCH 2 and MONARCH 1, was 29 days. In MONARCH 3, median duration of Grade ≥3 neutropenia was 11 days, and for MONARCH 2 and MONARCH 1 was 15 days.

Monitor complete blood counts prior to the start of Verzenio therapy, every 2 weeks for the first 2 months, monthly for the next 2 months, and as clinically indicated. Dose interruption, dose reduction, or delay in starting treatment cycles is recommended for patients who develop Grade 3 or 4 neutropenia.

Febrile neutropenia has been reported in <1% of patients exposed to Verzenio in the MONARCH studies. Two deaths due to neutropenic sepsis were observed in MONARCH 2. Inform patients to promptly report any episodes of fever to their healthcare provider.

Severe, life-threatening, or fatal interstitial lung disease (ILD) and/or pneumonitis can occur in patients treated with Verzenio and other CDK4/6 inhibitors. Across clinical trials (MONARCH 1, MONARCH 2, MONARCH 3), 3.3% of Verzenio-treated patients had ILD/pneumonitis of any grade, 0.6% had Grade 3 or 4, and 0.4% had fatal outcomes. Additional cases of ILD/pneumonitis have been observed in the post-marketing setting, with fatalities reported.

Monitor patients for pulmonary symptoms indicative of ILD/pneumonitis. Symptoms may include hypoxia, cough, dyspnea, or interstitial infiltrates on radiologic exams. Infectious, neoplastic, and other causes for such symptoms should be excluded by means of appropriate investigations.

Dose interruption or dose reduction is recommended in patients who develop persistent or recurrent Grade 2 ILD/pneumonitis. Permanently discontinue Verzenio in all patients with grade 3 or 4 ILD/pneumonitis.

Grade ≥3 increases in alanine aminotransferase (ALT) (6% versus 2%) and aspartate aminotransferase (AST) (3% versus 1%) were reported in the Verzenio and placebo arms, respectively, in MONARCH 3. Grade ≥3 increases in ALT (4% versus 2%) and AST (2% versus 3%) were reported in the Verzenio and placebo arms respectively, in MONARCH 2.

In MONARCH 3, for patients receiving Verzenio plus an aromatase inhibitor with Grade ≥3 increases in ALT or AST, median time to onset was 61 and 71 days, respectively, and median time to resolution to Grade <3 was 14 and 15 days, respectively. In MONARCH 2, for patients receiving Verzenio plus fulvestrant with Grade ≥3 increases in ALT or AST, median time to onset was 57 and 185 days, respectively, and median time to resolution to Grade <3 was 14 and 13 days, respectively.

For assessment of potential hepatotoxicity, monitor liver function tests (LFTs) prior to the start of Verzenio therapy, every 2 weeks for the first 2 months, monthly for the next 2 months, and as clinically indicated. Dose interruption, dose reduction, dose discontinuation, or delay in starting treatment cycles is recommended for patients who develop persistent or recurrent Grade 2, or Grade 3 or 4, hepatic transaminase elevation.

Venous thromboembolic events were reported in 5% of patients treated with Verzenio plus an aromatase inhibitor as compared to 0.6% of patients treated with an aromatase inhibitor plus placebo in MONARCH 3. Venous thromboembolic events were reported in 5% of patients treated with Verzenio plus fulvestrant in MONARCH 2 as compared to 0.9% of patients treated with fulvestrant plus placebo. Venous thromboembolic events included deep vein thrombosis, pulmonary embolism, pelvic venous thrombosis, cerebral venous sinus thrombosis, subclavian and axillary vein thrombosis, and inferior vena cava thrombosis. Across the clinical development program, deaths due to venous thromboembolism have been reported. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism and treat as medically appropriate.

Verzenio can cause fetal harm when administered to a pregnant woman based on findings from animal studies and the mechanism of action. In animal reproduction studies, administration of abemaciclib to pregnant rats during the period of organogenesis caused teratogenicity and decreased fetal weight at maternal exposures that were similar to the human clinical exposure based on area under the curve (AUC) at the maximum recommended human dose. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with Verzenio and for at least 3 weeks after the last dose. There are no data on the presence of Verzenio in human milk or its effects on the breastfed child or on milk production. Advise lactating women not to breastfeed during Verzenio treatment and for at least 3 weeks after the last dose because of the potential for serious adverse reactions in breastfed infants. Based on findings in animals, Verzenio may impair fertility in males of reproductive potential.

The most common adverse reactions (all grades, ≥10%) observed in MONARCH 3 for Verzenio plus anastrozole or letrozole and ≥2% higher than placebo plus anastrozole or letrozole vs placebo plus anastrozole or letrozole were diarrhea (81% vs 30%), neutropenia (41% vs 2%), fatigue (40% vs 32%), infections (39% vs 29%), nausea (39% vs 20%), abdominal pain (29% vs 12%), vomiting (28% vs 12%), anemia (28% vs 5%), alopecia (27% vs 11%), decreased appetite (24% vs 9%), leukopenia (21% vs 2%), creatinine increased (19% vs 4%), constipation (16% vs 12%), ALT increased (16% vs 7%), AST increased (15% vs 7%), rash (14% vs 5%), pruritus (13% vs 9%), cough (13% vs 9%), dyspnea (12% vs 6%), dizziness (11% vs 9%), weight decreased (10% vs 3%), influenza-like illness (10% vs 8%), and thrombocytopenia (10% vs 2%).

The most common adverse reactions (all grades, ≥10%) observed in MONARCH 2 for Verzenio plus fulvestrant and ≥2% higher than placebo plus fulvestrant vs placebo plus fulvestrant were diarrhea (86% vs 25%), neutropenia (46% vs 4%), fatigue (46% vs 32%), nausea (45% vs 23%), infections (43% vs 25%), abdominal pain (35% vs 16%), anemia (29% vs 4%), leukopenia (28% vs 2%), decreased appetite (27% vs 12%), vomiting (26% vs 10%), headache (20% vs 15%), dysgeusia (18% vs 3%), thrombocytopenia (16% vs 3%), alopecia (16% vs 2%), stomatitis (15% vs 10%), ALT increased (13% vs 5%), pruritus (13% vs 6%), cough (13% vs 11%), dizziness (12% vs 6%), AST increased (12% vs 7%), peripheral edema (12% vs 7%), creatinine increased (12% vs <1%), rash (11% vs 4%), pyrexia (11% vs 6%), and weight decreased (10% vs 2%).

The most common adverse reactions (all grades, ≥10%) observed in MONARCH 1 with Verzenio were diarrhea (90%), fatigue (65%), nausea (64%), decreased appetite (45%), abdominal pain (39%), neutropenia (37%), vomiting (35%), infections (31%), anemia (25%), thrombocytopenia (20%), headache (20%), cough (19%), leukopenia (17%), constipation (17%), arthralgia (15%), dry mouth (14%), weight decreased (14%), stomatitis (14%), creatinine increased (13%), alopecia (12%), dysgeusia (12%), pyrexia (11%), dizziness (11%), and dehydration (10%).

The most frequently reported ≥5% Grade 3 or 4 adverse reactions that occurred in the Verzenio arm vs the placebo arm of MONARCH 3 were neutropenia (22% vs 2%), diarrhea (9% vs 1%), leukopenia (8% vs <1%), ALT increased (7% vs 2%), and anemia (6% vs 1%).

The most frequently reported ≥5% Grade 3 or 4 adverse reactions that occurred in the Verzenio arm vs the placebo arm of MONARCH 2 were neutropenia (27% vs 2%), diarrhea (13% vs <1%), leukopenia (9% vs 0%), anemia (7% vs 1%), and infections (6% vs 3%).

The most frequently reported ≥5% Grade 3 or 4 adverse reactions from MONARCH 1 with Verzenio were neutropenia (24%), diarrhea (20%), fatigue (13%), infections (7%), leukopenia (6%), anemia (5%), and nausea (5%).

Lab abnormalities (all grades; Grade 3 or 4) for MONARCH 3 in ≥10% for Verzenio plus anastrozole or letrozole and ≥2% higher than placebo plus anastrozole or letrozole vs placebo plus anastrozole or letrozole were increased serum creatinine (98% vs 84%; 2% vs 0%), decreased white blood cells (82% vs 27%; 13% vs <1%), anemia (82% vs 28%; 2% vs 0%), decreased neutrophil count (80% vs 21%; 22% vs 3%), decreased lymphocyte count (53% vs 26%; 8% vs 2%), decreased platelet count (36% vs 12%; 2% vs <1%), increased ALT (48% vs 25%; 7% vs 2%), and increased AST (37% vs 23%; 4% vs <1%).

Lab abnormalities (all grades; Grade 3 or 4) for MONARCH 2 in ≥10% for Verzenio plus fulvestrant and ≥2% higher than placebo plus fulvestrant vs placebo plus fulvestrant were increased serum creatinine (98% vs 74%; 1% vs 0%), decreased white blood cells (90% vs 33%; 23% vs 1%), decreased neutrophil count (87% vs 30%; 33% vs 4%), anemia (84% vs 33%; 3% vs <1%), decreased lymphocyte count (63% vs 32%; 12% vs 2%), decreased platelet count (53% vs 15%; 2% vs 0%), increased ALT (41% vs 32%; 5% vs 1%), and increased AST (37% vs 25%; 4% vs 4%).

Lab abnormalities (all grades; Grade 3 or 4) for MONARCH 1 were increased serum creatinine (98%; <1%), decreased white blood cells (91%; 28%), decreased neutrophil count (88%; 27%), anemia (68%; 0%), decreased lymphocyte count (42%; 14%), decreased platelet count (41%; 2%), increased ALT (31%; 3%), and increased AST (30%; 4%).

Strong and moderate CYP3A inhibitors increased the exposure of abemaciclib plus its active metabolites to a clinically meaningful extent and may lead to increased toxicity. Avoid concomitant use of the strong CYP3A inhibitor ketoconazole. Ketoconazole is predicted to increase the AUC of abemaciclib by up to 16-fold. In patients with recommended starting doses of 200 mg twice daily or 150 mg twice daily, reduce the Verzenio dose to 100 mg twice daily with concomitant use of strong CYP3A inhibitors other than ketoconazole. In patients who have had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the Verzenio dose to 50 mg twice daily with concomitant use of strong CYP3A inhibitors. If a patient taking Verzenio discontinues a strong CYP3A inhibitor, increase the Verzenio dose (after 3 to 5 half-lives of the inhibitor) to the dose that was used before starting the inhibitor. With concomitant use of moderate CYP3A inhibitors, monitor for adverse reactions and consider reducing the Verzenio dose in 50 mg decrements. Patients should avoid grapefruit products.

Avoid concomitant use of strong or moderate CYP3A inducers and consider alternative agents. Coadministration of strong or moderate CYP3A inducers decreased the plasma concentrations of abemaciclib plus its active metabolites and may lead to reduced activity.

With severe hepatic impairment (Child-Pugh Class C), reduce the Verzenio dosing frequency to once daily. The pharmacokinetics of Verzenio in patients with severe renal impairment (CLcr <30 mL/min), end stage renal disease, or in patients on dialysis is unknown. No dosage adjustments are necessary in patients with mild or moderate hepatic (Child-Pugh A or B) and/or renal impairment (CLcr ≥30-89 mL/min).

AL HCP ISI 17SEP2019 (Press release, Eli Lilly, SEP 20, 2020, View Source [SID1234565386])

LYNPARZA Reduced Risk of Death by 31% vs. Enzalutamide or Abiraterone for Men with BRCA1/2 or ATM-Mutated Metastatic Castration Resistant Prostate Cancer Who Progressed Following Enzalutamide or Abiraterone in Phase 3 PROfound Trial

On September 20, 2020 AstraZeneca and Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported final results from the Phase 3 PROfound trial which showed LYNPARZA demonstrated a statistically significant and clinically meaningful improvement in overall survival (OS) versus enzalutamide or abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC) who have BRCA1/2 or ATM gene mutations (Press release, Merck & Co, SEP 20, 2020, View Source [SID1234565385]). Patients had progressed on prior treatment with enzalutamide and/or abiraterone.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Prostate cancer is the second most common type of cancer in men, with an estimated 1.3 million new patients diagnosed worldwide in 2018. Approximately 20-30% of men with mCRPC have an homologous recombination repair (HRR) gene mutation, of which BRCA1/2 and ATM mutations are a subpopulation. Approximately 10-20% of early stage hormone-sensitive prostate cancer cases will develop into CRPC within approximately five years.

In the key secondary endpoint of OS in men with BRCA1/2 or ATM gene mutations, LYNPARZA reduced the risk of death by 31% vs. retreatment with enzalutamide or abiraterone (HR 0.69 [95% CI, 0.50, 0.97], p=0.0175). Median OS was 19.1 months for LYNPARZA vs. 14.7 months for enzalutamide or abiraterone, despite 66% of men on these treatments having crossed over to receive treatment with LYNPARZA following disease progression.

An exploratory analysis also showed a non-statistically significant improvement in OS in the overall trial population of men with HRR gene mutations (BRCA1/2, ATM, CDK12 and 11 other HRR-mutated [HRRm] genes), reducing the risk of death by 21% with LYNPARZA vs. enzalutamide or abiraterone (HR 0.79 [95% CI, 0.61, 1.03]. Median OS was 17.3 months vs. 14 months for enzalutamide or abiraterone.

The most common adverse reactions (ARs) ≥15% were anemia (50%), nausea (43%), fatigue/asthenia (42%), decreased appetite (31%), diarrhea (21%), vomiting (20%) and constipation (19%). Grade 3 or above ARs were anemia (23%), nausea (2%), fatigue or asthenia (3%), decreased appetite (2%) and diarrhea (1%). Twenty percent of patients on LYNPARZA discontinued treatment due to ARs and 23% had their dose reduced due to an AR.

Dr. Johann de Bono, one of the principal investigators of the PROfound trial and head of drug development at the Institute for Cancer Research and the Royal Marsden Hospital, said, "LYNPARZA has demonstrated significant clinical benefit across key endpoints in PROfound and the final overall survival results for men with BRCA1/2 or ATM mutations reinforce its potential to change the standard of care for men with metastatic castration-resistant prostate cancer. The PROfound trial shows that LYNPARZA can play an important role in this new era of precision medicine in prostate cancer, bringing targeted therapy at a molecular level to patients with a historically poor prognosis and few treatment options."

Dr. José Baselga, executive vice president, Oncology R&D, AstraZeneca said, "These results help to transform the treatment landscape in certain men with metastatic castration-resistant prostate cancer, where overall survival has been very difficult to achieve. LYNPARZA is the only PARP inhibitor to demonstrate overall survival versus enzalutamide or abiraterone for men with BRCA or ATM mutations. We look forward to continuing to bring LYNPARZA to these patients around the world."

Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories, said, "The PROfound trial is the first positive Phase 3 trial using molecular biomarker testing to help identify treatment options for certain men with metastatic castration resistant prostate cancer. These results further underpin the importance of genomic testing for HRR gene mutations to help identify this at-risk patient population and help physicians make treatment decisions. These results demonstrate the potential of LYNPARZA for mCRPC patients with certain HRR mutations."

Final OS results from the PROfound trial were presented on Sunday, Sept. 20, 2020, during the Presidential Symposium at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) Virtual Congress 2020 and published simultaneously in The New England Journal of Medicine.

Summary of OS results

OS data cut-off date was March 20, 2020.

Men with BRCA1/2 and ATM
mutations (Cohort A)
Secondary Endpoint

Overall population
of men with HRR mutations
(Cohorts A+B)
Exploratory Endpoint

LYNPARZA n=162

Control

n=83

LYNPARZA n=256

Control

n=131

Median, months

19.1

14.7

17.3

14.0

Hazard ratio (95% CI)

0.69 (0.50, 0.97)

0.79 (0.61, 1.03)

P-value

0.0175

N/A

The Phase 3 PROfound trial had met its primary endpoint in August 2019, showing significantly improved radiographic progression-free survival (rPFS) in men with mutations in BRCA1/2 or ATM genes, and had met a key secondary endpoint of rPFS in the overall HRRm population, which formed the basis of the U.S. Food and Drug Administration approval in May 2020. Regulatory reviews are ongoing in the EU and other regions.

AstraZeneca and Merck are exploring additional trials in metastatic prostate cancer including the ongoing Phase 3 PROpel trial, with first data expected in 2021, evaluating LYNPARZA as a first-line medicine for patients with mCRPC in combination with abiraterone acetate versus abiraterone acetate alone.

About PROfound

PROfound is a prospective, multi-center, randomized, open-label, Phase 3 trial evaluating the efficacy and safety of LYNPARZA versus enzalutamide or abiraterone in patients with mCRPC who have progressed on prior treatment with abiraterone or enzalutamide and have a qualifying HRR tumor mutation (BRCA1/2, ATM, CDK12, BARD1, BRIP2, CHEK1, CHEK2, PALB2, PPP2R2A, RAD51B, RAD51D, RAD54L).

The trial was designed to analyze patients with HRRm genes in two cohorts: the primary endpoint was rPFS in those with mutations in BRCA1/2 or ATM genes and then, if LYNPARZA showed clinical benefit, a formal analysis was performed of the overall trial population of patients with HRRm genes (BRCA1/2, ATM, CDK12 and 11 other HRR mutated genes; a key secondary endpoint).

In the U.S., patients are selected for treatment with LYNPARZA based on the following FDA-approved companion diagnostics:

FoundationOne CDX: to identify patients with HRR gene alterations in prostate tumor tissue. FoundationOne is a registered trademark of Foundation Medicine, Inc.
BRACAnalysis CDX: a germline test to identify patients with BRCA1 and BRCA2 gene mutations. Myriad Genetics, Inc. owns and commercializes BRACAnalysis CDX.
IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS

Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females

Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males

Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.

ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/ nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONS—First-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab

Most common adverse reactions (Grades 1-4) in ≥10% of patients treated with LYNPARZA/bevacizumab compared to a ≥5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%) and leukopenia (18%). In addition, the most common adverse reactions (≥10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%), and headache (14%).

In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%), and decrease in platelets (35%).

ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONS—Advanced gBRCAm Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—gBRCAm, HER2-negative Metastatic Breast Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in >25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

ADVERSE REACTIONS—First-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).

DRUG INTERACTIONS

Anticancer Agents: Clinical studies of LYNPARZA with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid coadministration of strong or moderate CYP3A inhibitors when using LYNPARZA. If a strong or moderate CYP3A inhibitor must be coadministered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid coadministration of strong or moderate CYP3A inducers when using LYNPARZA.

USE IN SPECIFIC POPULATIONS

Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

INDICATIONS

LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance HRD Positive Advanced Ovarian Cancer in Combination with Bevacizumab

In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

a deleterious or suspected deleterious BRCA mutation and/or
genomic instability
Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer

For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm Ovarian Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm HER2-negative Metastatic Breast Cancer

For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer, who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer

For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Please click here for complete Prescribing Information, including Patient Information (Medication Guide).

About LYNPARZA (olaparib)

LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as BRCA mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

About Metastatic Castration-Resistant Prostate Cancer (mCRPC)

Prostate cancer is the second-most common cancer in men, with an estimated 1.3 million new cases diagnosed worldwide in 2018, and is associated with a significant mortality rate. Development of prostate cancer is often driven by male sex hormones called androgens, including testosterone. In patients with mCRPC, their prostate cancer grows and spreads to other parts of the body despite the use of androgen-deprivation therapy to block the action of male sex hormones. Approximately 10-20% of men with advanced prostate cancer will develop CRPC within five years, and at least 84% of these men will have metastases at the time of CRPC diagnosis. Of men with no metastases at CRPC diagnosis, 33% are likely to develop metastases within two years. Despite advances in treatment for men with mCRPC, five-year survival is low and extending survival remains a key goal for treating these men.

About Homologous Recombination Repair (HRR) Mutations

HRR mutations occur in approximately 20-30% of patients with mCRPC. HRR genes allow for accurate repair of damaged DNA in normal cells. HRR deficiency (HRD) means the DNA damage cannot be repaired, and can result in normal cell death. This is different in cancer cells, where a mutation in HRR pathways leads to abnormal cell growth and therefore cancer. HRD is a well-documented target for PARP inhibitors, such as LYNPARZA. PARP inhibitors block a rescue DNA damage repair mechanism by trapping PARP bound to DNA single-strand breaks which leads to replication fork stalling causing their collapse and the generation of DNA double-strand breaks, which in turn lead to cancer cell death.

About the AstraZeneca and Merck Strategic Oncology Collaboration

In July 2017, AstraZeneca and Merck, known as MSD outside the United States and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize certain oncology products including LYNPARZA, the world’s first PARP inhibitor, for multiple cancer types. Working together, the companies will develop these products in combination with other potential new medicines and as monotherapies. Independently, the companies will develop these oncology products in combination with their respective PD-L1 and PD-1 medicines.

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

Pieris Pharmaceuticals Presents Updated Data from Phase 1 Monotherapy and Atezolizumab Combination Studies of 4-1BB/HER2 Bispecific PRS-343 at the European Society for Medical Oncology (ESMO) Virtual Congress 2020

On September 20, 2020 Pieris Pharmaceuticals, Inc. (NASDAQ:PIRS), a clinical-stage biotechnology company advancing novel biotherapeutics through its proprietary Anticalin technology platform for respiratory diseases, cancer, and other indications, reported a clinical data update from the phase 1 monotherapy and atezolizumab combination studies of PRS-343, a 4-1BB/HER2 bispecific for the treatment of HER2-positive solid tumors, in an oral presentation at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) Virtual Congress 2020 (Press release, Pieris Pharmaceuticals, SEP 20, 2020, View Source [SID1234565384]). PRS-343 continues to demonstrate durable clinical benefit in the active dose cohorts, including a confirmed complete response, in heavily pre-treated patients across multiple HER2-positive tumor types. Additionally, a significant expansion of CD8+ T cells in the tumor microenvironment of responders and a substantial increase of soluble 4-1BB were observed in the active dose cohorts, suggesting 4-1BB-mediated target engagement driving clinical benefit. PRS-343 also shows an acceptable safety profile at all doses and schedules tested in each clinical study. The Company reaffirms its commitment to moving PRS-343 into a phase 2 trial in second-line gastric cancer in combination with paclitaxel and ramucirumab.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"PRS-343 has shown remarkable clinical benefit in the treatment of patients who have cancers that are refractory to standard treatments. I am particularly impressed with the single-agent activity in these heavily pre-treated patients as well with as the durability of response," said Geoffrey Y. Ku, MD, Assistant Attending and Head, Esophagogastric Section, Gastrointestinal Oncology Service at Memorial Sloan Kettering and a principal investigator for the PRS-343 monotherapy trial. "I look forward to assessing the benefit of PRS-343 in combination with standard of care therapy, ramucirumab and paclitaxel, in second line HER2-positive gastric cancer."

The phase 1 first-in-human, open-label multicenter monotherapy trial has enrolled 74 patients, including 21 additional patients enrolled in higher dose cohorts (≥2.5 mg/kg) since the data presented at the Society for Immunotherapy of Cancer (SITC) (Free SITC Whitepaper) 2019 Annual Meeting. Thirteen dose levels have been evaluated, 11 of which have been evaluated at a Q3W dosing schedule. The 11th dose level (8 mg/kg) has also been evaluated at a Q2W dosing schedule, including a Q2W dosing schedule in combination with obinutuzumab, and at a Q1W dosing schedule. The 12th (12 mg/kg) and 13th (18 mg/kg) dose levels have been evaluated exclusively at a Q2W dosing schedule.

The phase 1 first-in-human, open-label multicenter atezolizumab combination trial has enrolled 41 patients. Seven dose cohorts have been evaluated at a Q3W dosing schedule ranging from 0.05 mg/kg to 8 mg/kg in combination with a fixed 1200 mg dose of atezolizumab.

Primary objectives of both trials include characterizing the safety profile of PRS-343 in monotherapy or in combination with atezolizumab and identifying the maximum tolerated dose (MTD) and/or the recommended phase 2 dose (RP2D) of PRS-343 alone and in combination with atezolizumab. Secondary objectives include assessing potential immunogenicity and pharmacodynamic effects, characterizing the pharmacokinetic profile, investigating a dosing schedule, and investigating efficacy.

As of the cut-off date of July 27, 2020, 33 patients in the monotherapy trial and 29 patients in the atezolizumab combination trial were evaluable for a response at active dose levels in the trials, which began at cohort 9 (2.5 mg/kg) in the monotherapy trial and cohort 4 (1 mg/kg) in the atezolizumab combination trial.

In the monotherapy study, one patient with stage 4 rectal adenocarcinoma achieved a confirmed complete response at the 18 mg/kg Q2W dose level and three patients achieved a partial response at the 8 mg/kg Q2W dose level.
In the atezolizumab combination trial, four patients achieved a confirmed partial response at active dose levels.
Across the active dose levels and schedules, 13 patients in the monotherapy trial and 8 patients in the atezolizumab combination trial experienced stable disease.
As of the cutoff date, treatment duration across active dose levels is over 66 weeks in the monotherapy trial and over 78 weeks in the atezolizumab combination trial for at least one patient.
Post-treatment increases in CD8+ Tumor Infiltrating Lymphocytes and blood-based s4-1BB suggest clinical benefit is linked to 4-1BB activity
Treatment-related adverse events (TRAEs) in both trials were primarily grade 1 and 2. The most common TRAEs in the monotherapy trial were infusion-related reactions. Less than 6% of TRAEs in the monotherapy trial were grade 3, and one TRAE in that trial was grade 4 (infusion-related reaction). The most common TRAEs in the atezolizumab combination trial were infusion-related reactions and vomiting. Less than 6% of TRAEs in the atezolizumab combination trial were grade 3, and there were two grade 3 or above events (grade 4 AST increase and grade 3 transaminitis that became grade 5 hepatic failure).
"The newly presented data reinforce our conviction in the significant potential of PRS-343, the only HER2-targeted adaptive immune system engager in clinical development, to improve the lives of patients with few treatment options," said Stephen S. Yoder, President and Chief Executive Officer of Pieris. "In addition to showing single-agent clinical benefit, including complete response, PRS-343 continues to show impressive durability of response. Furthermore, the biomarker data are consistent with a 4-1BB mechanism of action, validating our 4-1BB bispecific approach. We look forward to completing the in-use studies necessary for resolution of the partial hold and beginning the phase 2 trial of PRS-343 in combination with ramucirumab and paclitaxel alongside our clinical trial collaborator Eli Lilly and Company."

A copy of the presentation is available at this link.

About PRS-343:

PRS-343 is a 4-1BB/HER2 fusion protein comprising a 4-1BB-targeting Anticalin protein and a HER2-targeting antibody. The drug candidate is currently in development for the treatment of HER2-positive solid tumors. Ongoing phase 1 studies of PRS-343 include a monotherapy study and a combination study with atezolizumab. Based on encouraging initial results from both studies, which demonstrated clinical benefit and biomarker data indicative of a 4-1BB-driven mechanism of action, the Company is actively working towards completing the required in-use studies, resolving the partial hold and initiating a phase 2 study of PRS-343 in combination with ramucirumab and paclitaxel for the treatment of HER2-positive gastric cancer in a second line setting.