Arrakis Therapeutics Enters Strategic Collaboration and License Agreement with Roche for Multi-Target Program Utilizing RNA-Targeted Small Molecule Drug Discovery Platform

On April 8, 2020 Arrakis Therapeutics, a biopharmaceutical company pioneering the discovery of a new class of small molecule medicines that directly target RNA, reported a strategic collaboration and license agreement with Roche (SIX: RO, ROG; OTCQX: RHHBY) for the discovery of RNA-targeted small molecule (rSM) drugs against a broad set of targets across all of Roche’s research and development areas (Press release, Arrakis Therapeutics, APR 8, 2020, View Source [SID1234556198]). Under the terms of the agreement, Arrakis will lead discovery and research activities for each target to a defined point, at which time Roche will have the right to exclusively pursue further preclinical and clinical development. Arrakis will receive an upfront payment of $190 million in cash and may also receive preclinical, clinical, commercial and sales milestone payments and royalties for any resulting products. The aggregate potential value of future payments to Arrakis exceeds several billion dollars, subject to regulatory approvals and other conditions being met.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are excited to partner with Roche’s strong research and development teams. Together, we share a common vision of accessing new drug targets at the RNA level and thereby discovering novel medicines to treat diseases with high unmet medical need. The collaboration will increase the number of new treatments for patients arising from our proprietary rSM discovery platform," said Michael Gilman, Ph.D., Chief Executive Officer of Arrakis. "In addition to the Roche collaboration, we are further building our capabilities and advancing our wholly-owned rSM programs for diseases unaddressed by today’s medicines."

"Through our pioneering work in RNA biology, we have built a platform for creating and adapting drug discovery tools that allow us to predict and validate the structure of RNA targets, locate druggable pockets, identify drug-like hits, and conduct medicinal chemistry programs to discover a new class of RNA-targeted medicines optimized for potency, selectivity, and safety. This agreement with Roche underscores the value inherent in our rSM platform and will enable us to continue to make leading discoveries and further scientific contributions in the field," said Jennifer C. Petter, Ph.D., Founder and Chief Scientific Officer of Arrakis.

Arrakis is taking a broad approach, targeting multiple mechanisms across the lifecycle of RNA to establish a new paradigm for small-molecule drug discovery. The company’s discovery platform integrates leading-edge RNA bioinformatic and structural tools, curated chemical libraries, RNA-specific assays, and RNA-guided medicinal chemistry. In addition to collaborating with partners, Arrakis is developing an internal pipeline of rSMs to treat a range of serious illnesses including cancers and other diseases where strongly validated targets and drivers of disease have been identified but have proven challenging with other drug approaches and modalities.

Exact Sciences schedules first-quarter 2020 earnings call

On April 8, 2020 Exact Sciences Corp. (Nasdaq: EXAS) reported that the company plans to release its first-quarter 2020 financial results after the close of the U.S. financial markets on May 6, 2020 (Press release, Exact Sciences, APR 8, 2020, View Source [SID1234556197]). Following the release, company management will host a webcast and conference call at 5 p.m. ET to discuss financial results and business progress.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Exact Sciences Corporation Logo (PRNewsfoto/EXACT SCIENCES CORP)

First-Quarter 2020 Webcast & Conference Call Details

Date:

Wednesday, May 6, 2020

Time:

5 p.m. ET, 4 p.m. CT

Webcast:

The live webcast can be accessed at www.exactsciences.com

Telephone:

Domestic callers, dial 833-235-7650

International callers, dial +1 647-689-4171

Access code for both domestic and international callers: 7874149

An archive of the webcast will be available at www.exactsciences.com. A replay of the conference call will be available by calling 800-585-8367 domestically or 416-621-4642 internationally. The access code for the replay of the call is 7874149. The webcast, conference call and replay are open to all interested parties.

Bristol Myers Squibb Announces Acceptance of U.S. and EU Regulatory Filings for Opdivo (nivolumab) Plus Yervoy (ipilimumab) Combined with Limited Chemotherapy in First-Line Lung Cancer

On April 8, 2020 Bristol Myers Squibb (NYSE:BMY) reported that the U.S. Food and Drug Administration (FDA) has accepted its supplemental Biologics License Application (sBLA) for Opdivo (nivolumab) plus Yervoy (ipilimumab), administered concomitantly with a limited course of chemotherapy, for the first-line treatment of patients with metastatic or recurrent non-small cell lung cancer (NSCLC) with no EGFR or ALK genomic tumor aberrations (Press release, Bristol-Myers Squibb, APR 8, 2020, View Source [SID1234556196]). The FDA granted this application Priority Review with a Prescription Drug User Fee Act (PDUFA) goal date of August 6, 2020, in addition to granting Fast Track designation.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Additionally, the European Medicines Agency (EMA) validated a type II variation application for Opdivo plus Yervoy, combined with limited chemotherapy, for the same indication. Validation of the application confirms the submission is complete and begins the EMA’s centralized review process. This follows an announcement on March 26, 2020 that Ono Pharmaceutical Co., in partnership with Bristol Myers Squibb, submitted a supplemental application for Opdivo plus Yervoy combined with limited chemotherapy for consideration of manufacturing and marketing approval in Japan.

The applications were based on results from the Phase 3 CheckMate -9LA trial. In October 2019, the company announced the trial met its primary endpoint of superior overall survival (OS) at a pre-specified interim analysis.

"Despite treatment advances, there remains a serious unmet need for additional innovative treatment options for lung cancer patients globally," said Sabine Maier, M.D., development lead, thoracic cancers, Bristol Myers Squibb. "The FDA’s acceptance and EMA’s validation of our applications represent important milestones for patients with lung cancer, and we look forward to working with regulatory authorities to bring the first and only dual immunotherapy plus limited chemotherapy regimen to patients as soon as possible."

About CheckMate -9LA

CheckMate -9LA is an open-label, multi-center, randomized Phase 3 trial evaluating Opdivo (360 mg Q3W) plus Yervoy (1 mg/kg Q6W) combined with chemotherapy (two cycles) compared to chemotherapy alone (up to four cycles followed by optional pemetrexed maintenance therapy if eligible) as a first-line treatment in patients with metastatic non-small cell lung cancer (NSCLC) regardless of PD-L1 expression and histology. Patients in the experimental arm were treated for up to two years or until disease progression or unacceptable toxicity. Patients in the control arm were treated with up to four cycles of chemotherapy and optional pemetrexed maintenance (if eligible) until disease progression or toxicity. The primary endpoint of the trial was overall survival (OS) in the intent-to-treat population. Secondary endpoints included progression-free survival (PFS), overall response rate (ORR) and efficacy measures according to biomarkers.

About Lung Cancer

Lung cancer is the leading cause of cancer deaths globally. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is one of the most common types of lung cancer and accounts for up to 84% of diagnoses. Survival rates vary depending on the stage and type of the cancer when diagnosed. For patients diagnosed with metastatic lung cancer, the five-year survival rate is approximately 5%.

Bristol Myers Squibb: Advancing Cancer Research

At Bristol Myers Squibb, patients are at the center of everything we do. The goal of our cancer research is to increase quality, long-term survival and make cure a possibility. We harness our deep scientific experience, cutting-edge technologies and discovery platforms to discover, develop and deliver novel treatments for patients.

Building upon our transformative work and legacy in hematology and Immuno-Oncology that has changed survival expectations for many cancers, our researchers are advancing a deep and diverse pipeline across multiple modalities. In the field of immune cell therapy, this includes registrational CAR T cell agents for numerous diseases, and a growing early-stage pipeline that expands cell and gene therapy targets, and technologies. We are developing cancer treatments directed at key biological pathways using our protein homeostasis platform, a research capability that has been the basis of our approved therapies for multiple myeloma and several promising compounds in early- to mid-stage development. Our scientists are targeting different immune system pathways to address interactions between tumors, the microenvironment and the immune system to further expand upon the progress we have made and help more patients respond to treatment. Combining these approaches is key to delivering new options for the treatment of cancer and addressing the growing issue of resistance to immunotherapy. We source innovation internally, and in collaboration with academia, government, advocacy groups and biotechnology companies, to help make the promise of transformational medicines a reality for patients.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol Myers Squibb’s scientific expertise in the field of Immuno-Oncology, and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

About Yervoy

Yervoy is a recombinant, human monoclonal antibody that binds to the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). CTLA-4 is a negative regulator of T-cell activity. Yervoy binds to CTLA-4 and blocks the interaction of CTLA-4 with its ligands, CD80/CD86. Blockade of CTLA-4 has been shown to augment T-cell activation and proliferation, including the activation and proliferation of tumor infiltrating T-effector cells. Inhibition of CTLA-4 signaling can also reduce T-regulatory cell function, which may contribute to a general increase in T-cell responsiveness, including the anti-tumor immune response. On March 25, 2011, the U.S. Food and Drug Administration (FDA) approved Yervoy 3 mg/kg monotherapy for patients with unresectable or metastatic melanoma. Yervoy is approved for unresectable or metastatic melanoma in more than 50 countries. There is a broad, ongoing development program in place for Yervoy spanning multiple tumor types.

Indications

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with intermediate or poor risk, previously untreated advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy, and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests, at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 6% (25/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 4.4% (24/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 1.7% (2/119) of patients.

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 10% (52/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 7% (8/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that trial (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Addition of an alternative immunosuppressive agent to the corticosteroid therapy, or replacement of the corticosteroid therapy, should be considered in corticosteroid-refractory immune-mediated colitis if other causes are excluded.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. For patients without HCC, withhold OPDIVO for Grade 2 and permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC, withhold OPDIVO and administer corticosteroids if AST/ALT is within normal limits at baseline and increases to >3 and up to 5 times the upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10 times the ULN. Permanently discontinue OPDIVO and administer corticosteroids if AST or ALT increases to >10 times the ULN or total bilirubin increases >3 times the ULN. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 13% (51/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 20% (10/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 7% (38/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 8% (10/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Neuropathies

In a separate Phase 3 trial of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 9% (36/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 4% (2/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypophysitis occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hypophysitis occurred in 3.4% (4/119) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 5% (21/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 18% (9/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 7% (41/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 5.9% (7/119) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving this dose of OPDIVO with YERVOY. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (11/49) of patients. Hyperthyroidism occurred in 10% (5/49) of patients receiving this dose of OPDIVO with YERVOY. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (119/547) of patients. Hyperthyroidism occurred in 12% (66/547) of patients receiving this dose of OPDIVO with YERVOY. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 15% (18/119) of patients. Hyperthyroidism occurred in 12% (14/119) of patients. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, diabetes occurred in 1.5% (6/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, diabetes occurred in 2.7% (15/547) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 1.7% (2/119) of patients.

Immune-Mediated Skin Adverse Reactions and Dermatitis

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 22.6% (92/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 35% (17/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 16% (90/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 14% (17/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one melanoma patient receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg (0.2%) after 1.7 months of exposure. Encephalitis occurred in one RCC patient receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg (0.2%) after approximately 4 months of exposure. Encephalitis occurred in one MSI-H/dMMR mCRC patient (0.8%) receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg after 15 days of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of the adverse reaction, permanently discontinue or withhold OPDIVO, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Across clinical trials of OPDIVO monotherapy or in combination with YERVOY, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1.0% of patients receiving OPDIVO: myocarditis, rhabdomyolysis, myositis, uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), motor dysfunction, vasculitis, aplastic anemia, pericarditis, and myasthenic syndrome.

If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been observed in patients receiving OPDIVO and may require treatment with systemic steroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO can cause severe infusion-related reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion-related reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 4.2% (5/119) of patients.

Embryo-Fetal Toxicity

Based on mechanism of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO or YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from OPDIVO or YERVOY, advise women not to breastfeed during treatment and for at least 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in ≥2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in ≥4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis.

Common Adverse Reactions

In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, the most common adverse reactions (≥20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see U.S. Full Prescribing Information for OPDIVO and YERVOY, including Boxed WARNING regarding immune-mediated adverse reactions for YERVOY.

Checkmate Trials and Patient Populations

Checkmate 037–previously treated metastatic melanoma; Checkmate 066–previously untreated metastatic melanoma; Checkmate 067–previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 017–second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057–second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 032–small cell lung cancer; Checkmate 025–previously treated renal cell carcinoma; Checkmate 214–previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 205/039–classical Hodgkin lymphoma; Checkmate 141–recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275–urothelial carcinoma; Checkmate 142–MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040–hepatocellular carcinoma; Checkmate 238–adjuvant treatment of melanoma.

About the Bristol Myers Squibb and Ono Pharmaceutical Collaboration

In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Bristol Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally, except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Ono and Bristol Myers Squibb further expanded the companies’ strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies – as single agents and combination regimens – for patients with cancer in Japan, South Korea and Taiwan.

Bio-Techne To Host Conference Call On April 30, 2020 To Announce Third Quarter 2020 Financial Results

On April 8, 2020 Bio-Techne Corporation (NASDAQ: TECH) reported that management will host a conference call and webcast on Thursday, April 30, 2020, at 8:00 a.m. CDT to review third quarter 2020 financial results (Press release, Bio-Techne, APR 8, 2020, https://investors.bio-techne.com/news/detail/183/bio-techne-to-host-conference-call-on-april-30-2020-to-announce-third-quarter-2020-financial-results [SID1234556195]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Access to the discussion may be obtained as follows:

Time:

8:00 a.m. CDT

Date:

April 30, 2020

Dial-in:

1-877-407-9208 or 1-201-493-6784 (for international callers)

Conference ID:

13701798

Webcast:

View Source

A recorded rebroadcast will be available for interested parties unable to participate in the live conference call by dialing 1-844-512-2921 or 1-412-317-6671 (for international callers) and referencing Conference ID 13701798 or by going to:

View Source

The replay will be available from 11:00 a.m. CDT on Thursday, April 30, 2020 until 11:00 p.m. CDT on Saturday, May 30, 2020.

Regeneron and Zai Lab Announce Regional Strategic Collaboration for REGN1979 (CD20xCD3 Bispecific Antibody)

On April 8, 2020 Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN) and Zai Lab Limited (NASDAQ: ZLAB) reported a strategic collaboration for the development and commercialization of REGN1979 (CD20xCD3 bispecific antibody) in mainland China, Hong Kong, Taiwan and Macau (Press release, Zai Laboratory, APR 8, 2020, View Source [SID1234556192]). The collaboration will support global clinical development for REGN1979, starting with the ongoing potentially registrational Phase 2 program in B-cell non-Hodgkin lymphoma (B-NHL). Additionally, if REGN1979 is approved, Zai Lab will leverage its capabilities to commercialize REGN1979 in this region. REGN1979 is the most advanced investigational bispecific monoclonal antibody from Regeneron’s bispecific platform and is designed to trigger tumor killing by linking and activating a cytotoxic T-cell (binding to CD3) to a lymphoma cell (binding to CD20).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Under the terms of the agreement, Regeneron will receive a $30 million upfront payment and is eligible to receive up to $160 million in additional regulatory and sales milestones. Zai Lab will contribute to the global development costs for REGN1979 for certain trials and will receive the rights to develop and exclusively commercialize REGN1979 in oncology in mainland China, Hong Kong, Taiwan and Macau. Additionally, Zai Lab will make payments to Regeneron based on net sales, such that Regeneron shares in a significant portion of any potential profits. Regeneron will be responsible for the manufacture and supply of REGN1979 for development and commercialization in the region.

"Zai Lab is an ideal collaborator for us, with an established and respected track record that aligns with our mission to use the power of science to repeatedly bring new medicines to patients with serious diseases," said Israel Lowy, M.D., Ph.D., Senior Vice President and Head of Clinical and Translational Sciences for Oncology at Regeneron. "Zai’s support will not only help bolster enrollment into global REGN1979 trials, but will also enable this promising investigational medicine to reach patients faster in this key region, if approved."

"Regeneron is a global leader in the research and development of innovative medicines, and we are delighted to collaborate on the investigational bispecific antibody REGN1979 as we expand our oncology franchise into hematologic cancers," said Samantha Du, Ph.D., Founder, Chairperson and Chief Executive Officer at Zai Lab. "Zai looks forward to contributing significantly to the success of REGN1979 with our regulatory and clinical expertise, and

commercial footprint in mainland China, Hong Kong, Taiwan and Macau. We are committed to collaborating with Regeneron to expand its global effort and bring innovative medicines to patients with unmet medical needs."

REGN1979 was granted orphan drug designation by the U.S. Food and Drug Administration (FDA) for the treatment of follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). REGN1979 is currently being investigated as a treatment for late stages of FL, DLBCL and other lymphomas in a Phase 1 trial as well as a potentially registrational Phase 2 trial. Positive data for REGN1979 from the Phase 1 trial were last shared at the 2019 American Society of Hematology (ASH) (Free ASH Whitepaper) Annual Meeting.

Conference Call and Webcast Information

Zai Lab will host a live conference call and webcast today, April 8, 2020 at 8:00 a.m. EST to discuss the strategic collaboration. Listeners may access the live webcast by visiting the Company’s website at View Source Participants must register in advance of the conference call. Details are as follows:

Registration Link: View Source

Conference ID: 4299594

All participants must use the link provided above to complete the online registration process in advance of the conference call. Upon registering, each participant will receive a dial-in number, Direct Event passcode, and a unique access PIN, which can be used to join the conference call.

A replay will be available shortly after the call and can be accessed by visiting the Company’s website at View Source

About the Regeneron Bispecific Antibody Platform

All of Regeneron’s bispecifics are designed to closely resemble natural human antibodies and bind to two different targets. They are derived from a next-generation version of Regeneron’s proprietary VelocImmune technology that utilizes a proprietary genetically-engineered mouse platform endowed with a genetically-humanized immune system to produce optimized fully-human antibodies and further created using the company’s Veloci-Bi platform. These allow for the creation of bispecifics with no linkers or artificial sequences. Additionally, Regeneron bispecifics are manufactured using similar approaches used for human antibody medicines, with similar pharmacokinetics.

VelocImmune has been used to create multiple antibodies including Dupixent (dupilumab), Praluent (alirocumab), Libtayo (cemiplimab-rwlc) and Kevzara (sarilumab), which are approved in multiple countries around the world. Regeneron previously used these technologies to rapidly develop a treatment for Ebola virus infection, which is currently under review by the FDA, and is now being used in efforts to create prophylactic and treatment medicines for COVID-19.

There are six Regeneron investigational bispecific antibodies currently in ongoing clinical trials for multiple blood cancers and solid tumors. These bispecifics fall into three categories:

CD3 bispecifics are designed to bridge T-cells and tumor cells. At the tumor site, they activate T-cells via their CD3 receptors and promote T-cell killing of the cancer cells. Investigational candidates include:

CD20xCD3 (REGN1979) for non-Hodgkin B-cell lymphomas;

Two distinct BCMAxCD3s (REGN5458 and REGN5459) for multiple myeloma;

MUC16xCD3 (REGN4018) for ovarian cancer.

CD28 costimulatory bispecifics are also designed to bridge T-cells and tumor cells. At the tumor site, they costimulate T-cells via their CD28 receptors and may synergize with PD-1 inhibitors and/or CD3 bispecifics. Investigational candidates include:

PSMAxCD28 (REGN5678) in combination with Libtayo for prostate cancer.

Tumor-targeted bispecifics are designed to target proteins only on the cancer cell. In this way, they may affect various signaling pathways to hamper the cancer cell’s ability to survive and proliferate. Investigational candidates include:

METxMET (REGN5093) for non-small cell lung cancer that is driven by MET mutations and/or amplifications. REGN5093 targets two different parts of the MET receptor on cancer cells to degrade the receptor and block its ability to trigger cell proliferation.

Regulatory Status of Regeneron Oncology Programs

The bispecifics mentioned in this press release are currently under clinical development, and their safety and efficacy have not been fully evaluated by any regulatory authority.

Libtayo in combination with REGN5678 is currently under clinical development for prostate cancer, and its safety and efficacy have not been evaluated by any regulatory authority for this use. Libtayo is currently approved in the U.S. for the treatment of patients with metastatic cutaneous squamous cell carcinoma (CSCC) or locally advanced CSCC who are not candidates for curative surgery or curative radiation, and in other countries for similar indications. In the U.S., the generic name for Libtayo is cemiplimab-rwlc, with rwlc as the suffix designated in accordance with Nonproprietary Naming of Biological Products Guidance for Industry issued by the U.S. Food and Drug Administration.

As part of a global collaboration agreement, Regeneron and Sanofi are jointly developing Libtayo, as well as Regeneron’s BCMAxCD3 and MUC16xCD3 bispecific programs.

About B-cell non-Hodgkin lymphoma (B-NHL) in China

Non-Hodgkin lymphomas (NHL) represent a diverse group of cancers that originate from B-, T- or natural killer-cells, with annual incidence and death rates in China of more than 88,000 and 48,000, respectively, as of 2018. NHL originating in B-cells (B-NHL) make up 85% of all NHL cases, with the two most common subtypes being DLBCL and FL.

DLBCL is an aggressive form of B-NHL with up to 50% of patients with advanced stage disease progressing after first-line treatment (e.g., relapsing or becoming refractory to treatment). For patients with R/R DLBCL, treatment options are limited and the prognosis is poor.

FL is a slow-growing (indolent) form of B-NHL with most cases diagnosed in advanced stages. Although median survival ranges from 8 to 15 years in advanced FL, current therapeutic options are not curative, and most patients relapse within 5 years regardless of the regimen. In some cases, FL can transform into DLBCL, at which point it is often treated in the same way as DLBCL.