Advaxis Reports Fiscal Third Quarter 2019 Financial Results and Provides Pipeline Update

On September 9, 2019 Advaxis, Inc. (Nasdaq: ADXS), a clinical-stage biotechnology company focused on the discovery, development and commercialization of immunotherapy products, reported an update on its clinical pipeline and financial results for the fiscal third quarter ended July 31, 2019 (Press release, Advaxis, SEP 9, 2019, View Source [SID1234539366]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Key corporate and clinical pipeline updates include:

Completed enrollment of the first dose level in Part A of the Phase 1/2 trial with ADXS-503 monotherapy ("HOT Lung") being studied in patients with non-small cell lung cancer and set to begin enrolling patients simultaneously in the second dose level of Part A as well as Part B, a combination arm consisting of ADXS-503 plus a checkpoint inhibitor.
Received $17 million in gross proceeds from an underwritten public offering.
Presented early immune response and clinical data from the Phase 1 ADXS-NEO study, an open-label, dose-escalation, multicenter clinical trial. Preliminary direct ELISpot data showed that CD8+ T cell reactivity was generated in >90% of neoantigen pools from four patients so far treated (i.e., 1X 109 colony forming units (CFU) (n=2) and 1X108 CFU (n=2)) as well as antigen spreading. Initial deconvoluted ELISpot data from the second patient treated at 1X 109 CFU showed a hit rate of up to 90% of personalized antigen targets in the ADXS-NEO vectors. In addition, hotspot mutations were identified in all four patients treated in this study with CD8+ T cells generated against the hotspot mutations in the two evaluated patients’ tumors serving as an important proof-of-mechanism for the Company’s HOT program. To date, dosing of ADXS-NEO at 1×108 CFU has been safe, tolerable and immunogenic in two patients. ADXS-NEO dosed at 1×109 CFU was beyond the maximum tolerated dose with reversible Grade 3 hypoxia (n=2) and Grade 3 hypotension (n=1) dose-limiting toxicities.
Presented two posters at the Frontiers in Cancer Immunotherapy conference at the New York Academy of Sciences with updated data from previous presentations at the recent American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting. Findings from the first poster, "Effects of ADXS-PSA With or Without Pembrolizumab on Survival and Antigen Spreading in Metastatic, Castration-Resistant Prostate Cancer Patients (Results from KEYNOTE-046)," showed prolonged survival in prostate cancer patients with advanced and microsatellite-stable (MSS) disease, a subset of patients that are unlikely to respond to checkpoint inhibitors. The combination of ADXS-PSA and pembrolizumab appeared safe and tolerable in this heavily pretreated population of patients with metastatic castration-resistant prostate cancer. The majority of treatment-related adverse events consisted of transient and reversible Grade 1-2 chills/rigors, fever, hypotension, nausea and fatigue with no additive toxicity. Data from the second poster, "Safety and Immunogenicity of a Personalized Neoantigen-Listeria Vaccine in Cancer Patients" include further data from ADXS-NEO showing two MSS colorectal cancer patients dosed with ADXS-NEO at 1×108 CFU demonstrating increased CD8+ T cell infiltration in the tumor microenvironment after three doses of ADXS-NEO. Both patients had MSS metastatic colorectal cancer, which is considered to be a "cold" tumor that typically exhibits little CD8+ T cell infiltration along with resistance to immunotherapy, yet the preliminary results from both suggested a successful transition from "cold" tumors into "hot" tumors with ADXS-NEO therapy. An estimated 80-85% of colorectal cancer patients are MSS.
Reduced operating expenses for the nine months ended July 31, 2019 by $24.6 million, or 46%, compared to the prior year’s comparable period.
Management Commentary

"We believe the data generated from our ADXS-NEO program has provided valuable immunological insight that will be applicable across our neoantigen programs," said Kenneth A. Berlin, President and Chief Executive Officer of Advaxis. "Specifically, we are increasingly excited by the potential of our investigational ADXS-HOT program to provide a rapidly available, off-the-shelf immunotherapy to patients and believe that the generation of CD8+ T cells against hotspot mutations in the NEO program serves as an important proof-of-mechanism for this approach. In addition, we are thrilled to see consistent antigen spreading across our programs which is an important driver of clinical response."

Mr. Berlin continued, "We have continued our efforts to reduce cash burn and increase efficiencies, and with our improved cash position we will continue to focus our efforts on those programs most likely to improve patient outcomes and create shareholder value. We look forward to providing a more detailed pipeline update next month with important details relevant to the advancement of our innovative immunotherapy clinical programs."

Fiscal Third Quarter Ended July 31, 2019 Financial Results

Research and development expenses for the third quarter of fiscal year 2019 were $7.1 million, compared with $10.6 million for the third quarter of fiscal year 2018. The decrease is largely attributable to the wind down of its Phase 3 clinical trial in high-risk, locally advanced cervical cancer, as announced in June 2019.

General and administrative expenses for the three months ended July 31, 2019 decreased approximately $1.7 million, or 35%, compared to the same three-month period in 2018. In June 2018, the Company began instituting measures to control costs for non-essential items in areas that do not support the strategic direction of the company. The decrease in expenses in these areas is a direct result of these cost control measures.

As of July 31, 2019, the Company had approximately $41.8 million in cash and cash equivalents. The Company believes this is sufficient capital to fund its obligations, as they become due, in the ordinary course of business until at least September 2020.

Pivotal New Data from Merck’s Broad Oncology Portfolio at ESMO 2019 Congress

On September 9, 2019 Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported new data from its broad oncology portfolio and pipeline will be presented at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) 2019 Congress in Barcelona, Spain, from Sept. 27-Oct. 1, 2019 (Press release, Merck & Co, SEP 9, 2019, View Source [SID1234539364]). More than 80 abstracts involving Merck cancer medicines and investigational candidates will be featured at the congress, spanning over 18 tumor types. Three of these abstracts – KEYTRUDA data in triple-negative breast cancer (TNBC), LYNPARZA data in prostate cancer and LYNPARZA data in ovarian cancer – were selected for inclusion in the ESMO (Free ESMO Whitepaper) Presidential Symposium sessions.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The breadth of data to be presented at ESMO (Free ESMO Whitepaper) reflect our company’s commitment to advance KEYTRUDA and the other medicines in our portfolio across cancer types and stages of disease to help improve outcomes for cancer patients," said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. "Five years ago, KEYTRUDA received its first worldwide approval, and today new KEYTRUDA data will be presented at ESMO (Free ESMO Whitepaper) across more than 15 types of cancer, including first-time results in triple-negative breast cancer, in addition to new data for LYNPARZA, LENVIMA and our investigational candidates."

Key abstracts to be presented at ESMO (Free ESMO Whitepaper) include:

First presentation of results from the pivotal Phase 3 KEYNOTE-522 trial evaluating KEYTRUDA in combination with chemotherapy as neoadjuvant therapy in patients with TNBC, which will be featured in the ESMO (Free ESMO Whitepaper) Presidential Symposium and Press Program (Abstract #LBA8). As previously announced, KEYNOTE-522 met one of the dual primary endpoints of pathological complete response (pCR) following the neoadjuvant part of the neoadjuvant/adjuvant study regimen in patients with TNBC. Based on an interim analysis, KEYTRUDA in combination with chemotherapy demonstrated a statistically significant improvement in pCR rates compared with chemotherapy alone, regardless of PD-L1 status.
First presentation of results from the Phase 3 PROfound trial evaluating Merck and AstraZeneca’s PARP inhibitor LYNPARZA in patients with metastatic castration-resistant prostate cancer (mCRPC) selected for BRCA 1/2 or ATM gene mutations, a subpopulation of homologous recombination repair gene mutations (HRRm), and who have progressed on prior treatment with new hormonal anticancer treatments. These data will be featured in the ESMO (Free ESMO Whitepaper) Presidential Symposium and Press Program (Abstract #LBA12). As previously announced, the PROfound trial met its primary endpoint, showing a statistically significant and clinically meaningful improvement in radiographic progression-free survival compared to enzalutamide or abiraterone.
First presentation of results from the Phase 3 PAOLA-1 trial evaluating LYNPARZA plus bevacizumab as maintenance therapy in patients with advanced ovarian cancer who responded to first-line platinum-based chemotherapy and bevacizumab, which will be featured in the ESMO (Free ESMO Whitepaper) Presidential Symposium and Press Program (Abstract #LBA2). As previously announced, PAOLA-1 met its primary endpoint, significantly reducing the risk of disease progression or death in women taking LYNPARZA plus bevacizumab versus those taking bevacizumab alone.
First presentation of final results from the endometrial cohort from the Phase 1b/2 KEYNOTE-146/Study 111 trial evaluating KEYTRUDA plus LENVIMA in patients with advanced endometrial carcinoma (Abstract #994O) (in collaboration with Eisai).
Presentation of final results from the pivotal Phase 3 KEYNOTE-407 study evaluating KEYTRUDA plus chemotherapy in patients with metastatic squamous non-small cell lung cancer (NSCLC) (Abstract #LBA82).
Initial results from the KEYNOTE-869/EV-103 trial evaluating KEYTRUDA plus enfortumab vedotin in locally advanced or metastatic urothelial cancer (Abstract #901O).
A first-in-human Phase 1/2 trial of the oral HIF-2a inhibitor PT2977 in patients with advanced renal cell carcinoma (RCC) (Abstract #911PD). PT2977 is now part of Merck’s broad early stage oncology pipeline following the acquisition of Peloton Therapeutics.
Details on Abstracts Listed Above & Other Late-breaking and/or Proffered Paper Sessions

KEYTRUDA

Breast Cancer

Abstract #LBA8, Proffered Paper Session: KEYNOTE-522: Phase 3 Study of Pembrolizumab (Pembro) + Chemotherapy (Chemo) vs Placebo (Pbo) + Chemo as Neoadjuvant Treatment, Followed by Pembro vs Pbo as Adjuvant Treatment for Early Triple-Negative Breast Cancer (TNBC). P. Schmid. Sunday, September 29, 5:15-5:30 p.m. CEST. Location: Barcelona Auditorium (Hall 2).
Abstract #LBA21, Proffered Paper Session: KEYNOTE-119: Phase 3 Study of Pembrolizumab (Pembro) Versus Single-Agent Chemotherapy (Chemo) for Metastatic Triple-Negative Breast Cancer (mTNBC). J. Cortés. Saturday, September 28, 10:27-10:39 a.m. CEST. Location: Barcelona Auditorium (Hall 2).
Lung Cancer

Abstract #LBA82, Poster Discussion Session: Pembrolizumab (Pembro) + Chemotherapy (Chemo) in Metastatic Squamous NSCLC: Final Analysis and Progression After the Next Line of Therapy (PFS2) in KEYNOTE-407. L. Paz-Ares. Sunday, September 29, 4:30-5:45 p.m. CEST (poster). 4:30 p.m. CEST (discussion). Location: Cordoba Auditorium (Hall 7).
Abstract #1482O, Proffered Paper Session: Outcomes with Pembrolizumab (Pembro) Monotherapy in Patients (Pts) with PD-L1–Positive NSCLC with Brain Metastases: Pooled Analysis of KEYNOTE-001, -010, -024, and -042. A. Mansfield. Monday, September 30, 9:30-9:45 a.m. CEST. Location: Madrid Auditorium (Hall 2).
Abstract #LBA79, Proffered Paper Session: Association Between Tissue TMB (tTMB) and Clinical Outcomes with Pembrolizumab Monotherapy (Pembro) in PD-L1-Positive Advanced NSCLC in the KEYNOTE-010 and -042 trials. R. Herbst. Friday, September 27, 4:39-4:51 p.m. CEST. Location: Barcelona Auditorium (Hall 2).
Abstract #LBA80, Proffered Paper Session: Pembrolizumab (Pembro) Plus Platinum-Based Chemotherapy (Chemo) for Metastatic NSCLC: Tissue TMB (tTMB) and Outcomes in KEYNOTE-021, 189, and 407. L. Paz-Ares. Friday, September 27, 4:51-5:03 p.m. CEST. Location: Barcelona Auditorium (Hall 2).
Solid Tumors

Abstract #440O, Proffered Paper Session: Phase 1 Study of the Arginase Inhibitor INCB001158 (1158) Alone and in Combination with Pembrolizumab (Pem) in Patients (Pts) with Advanced/Metastatic (Adv/Met) Solid Tumors. A. Naing. Sunday, September 29, 4:56-5:06 p.m. CEST. Location: Malaga Auditorium (Hall 5).
Abstract #1192O, Proffered Paper Session: Association of Tumor Mutational Burden with Outcomes in Patients with Select Advanced Solid Tumors Treated with Pembrolizumab in KEYNOTE-158. A. Marabelle. Monday, September 30, 10:30-10:45 a.m. CEST. Location: Barcelona Auditorium (Hall 2).
Microsatellite Instability High (MSI-H) Cancers

Abstract #1174O, Proffered Paper Session: Pembrolizumab in Microsatellite Instability High Cancers: Updated Analysis of the Phase 2 KEYNOTE-164 and KEYNOTE-158 Studies. L. Diaz. Monday, September 30, 10:45-11:00 a.m. CEST. Location: Barcelona Auditorium (Hall 2).
Gastric Cancers

Abstract #LBA44, Proffered Paper Session: Pembrolizumab with or without Chemotherapy vs Chemotherapy in Patients with Advanced G/GEJ Cancer (GC) Including Outcomes According to Microsatellite Instability-High (MSI-H) Status in KEYNOTE-062. K. Shitara. Sunday, September 29, 11:15-11:30 a.m. CEST. Location: Madrid Auditorium (Hall 2).
Abstract #LBA45, Poster Discussion Session: Health-Related Quality of Life (HRQoL) Impact of Pembrolizumab (P) Versus Chemotherapy (C) as First-Line (1L) Treatment in PD-L1–Positive Advanced Gastric or Gastroesophageal Junction (G/GEJ) Adenocarcinoma. E. Van Cutsem. Saturday, September 28, 4:30-5:50 p.m. CEST (poster). 4:50 p.m. CEST (discussion). Location: Tarragona Auditorium (Hall 7).
Skin Cancer

Abstract #LBA72, Poster Discussion Session: Pembrolizumab for Recurrent/Metastatic Cutaneous Squamous Cell Carcinoma (cSCC): Efficacy and Safety Results From the Phase 2 KEYNOTE-629 Study. J. Grob. Saturday, September 28, 2:45-4:00 p.m. CEST (poster). 3:02 p.m. CEST (discussion). Location: Granada Auditorium (Hall 3).
LYNPARZA (olaparib) (in collaboration with AstraZeneca)

Prostate Cancer

Abstract #LBA12, Proffered Paper Session: PROfound: Phase 3 Study of Olaparib Versus Enzalutamide or Abiraterone for Metastatic Castration-Resistant Prostate Cancer (mCRPC) with Homologous Recombination Repair (HRR) Gene Alterations. M. Hussain. Monday, September 30, 5:09-5:21 p.m. CEST. Location: Barcelona Auditorium (Hall 2).
Ovarian Cancer

Abstract #LBA2, Proffered Paper Session: Phase 3 PAOLA-1/ENGOT-ov25 Trial: Olaparib plus Bevacizumab (Bev) as Maintenance Therapy in Patients (Pts) with Newly Diagnosed, Advanced Ovarian Cancer (OC) Treated with Platinum-Based Chemotherapy (PCh) Plus Bev. I. Ray-Coquard. Saturday, September 28, 4:42-4:54 p.m. CEST. Location: Barcelona Auditorium (Hall 2).
KEYTRUDA + LENVIMA (lenvatinib) (in collaboration with Eisai)

Endometrial Cancer

Abstract #994O, Proffered Paper Session: Lenvatinib (LEN) and Pembrolizumab (PEMBRO) in Advanced Endometrial Cancer (EC). V. Makker. Sunday, September 29, 9:30-9:45 a.m. CEST. Location: Madrid Auditorium (Hall 2).
Pipeline/Early Oncology

Bladder Cancer

Abstract #901O, Proffered Paper Session: EV-103: Initial Results of Enfortumab Vedotin Plus Pembrolizumab for Locally Advanced or Metastatic Urothelial Carcinoma. C. Hoimes. Saturday, September 28, 9:15-9:30 a.m. CEST. Location: Barcelona Auditorium (Hall 2).
Renal Cell Carcinoma

Abstract #911PD, Poster Discussion Session: A First-in-Human Phase 1/2 Trial of the Oral HIF-2a Inhibitor PT2977 in Patients with Advanced RCC. E. Jonasch. Sunday, September 29, 3:00-4:15 p.m. CEST (poster). 3:35 p.m. CEST (discussion). Location: Pamplona Auditorium (Hall 2).
For more information, including a complete list of abstract titles and presentation dates and times for Merck’s oncology portfolio and pipeline, please visit the ESMO (Free ESMO Whitepaper) website at View Source

About KEYTRUDA (pembrolizumab) Injection, 100mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for the treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [CPS ≥10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grade 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination with Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%), receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency), thyroid function (prior to and periodically during treatment), and hyperglycemia. For hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 and withhold or discontinue for Grade 3 or 4 hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including cHL, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with HCC were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent of which (≥1%) included hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%). The most common adverse reactions (>1%) resulting in permanent discontinuation of KEYTRUDA, axitinib or the combination were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). When KEYTRUDA was used in combination with axitinib, the most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

Lactation

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use

There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

Please see Prescribing Information for KEYTRUDA at View Source and

Medication Guide for KEYTRUDA at View Source

About LYNPARZA (olaparib)

LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as BRCA mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS

Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females

Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males

Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/ nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONS—Advanced gBRCAm ovarian cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—gBRCAm, HER2-negative metastatic breast cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in >25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

DRUG INTERACTIONS

Anticancer Agents: Clinical studies of LYNPARZA in combination with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid concomitant use of strong or moderate CYP3A inhibitors. If a strong or moderate CYP3A inhibitor must be co-administered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid concomitant use of strong or moderate CYP3A inducers when using LYNPARZA. If a moderate inducer cannot be avoided, there is a potential for decreased efficacy of LYNPARZA.

USE IN SPECIFIC POPULATIONS

Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No adjustment to the starting dose is necessary in patients with mild renal impairment (CLcr=51-80 mL/min), but patients should be monitored closely for toxicity. In patients with moderate renal impairment (CLcr=31-50 mL/min), reduce the dose to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

INDICATIONS

LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients with gBRCAm advanced epithelial ovarian, fallopian tube or primary peritoneal cancer for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer

For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm ovarian cancer

For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm, HER2-negative metastatic breast cancer

In patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Please see complete Prescribing Information for LYNPARZA (olaparib) tablets at View Source and complete Prescribing Information for LYNPARZA capsules, at View Source including Patient Information (Medication Guides).

About LENVIMA (lenvatinib) Capsules, 10 mg and 4 mg

LENVIMA (lenvatinib) is a kinase inhibitor that is indicated in the U.S.:

For the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer (RAI-refractory DTC)
In combination with everolimus for the treatment of patients with advanced renal cell carcinoma (RCC) following one prior anti-angiogenic therapy
For the first-line treatment of patients with unresectable hepatocellular carcinoma (HCC)
LENVIMA, discovered and developed by Eisai, is a kinase inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). LENVIMA inhibits other kinases that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1-4; the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. Lenvatinib also exhibited antiproliferative activity in hepatocellular carcinoma cell lines dependent on activated FGFR signaling with a concurrent inhibition of FGF-receptor substrate 2α (FRS2α) phosphorylation.

Selected Safety Information

Warnings and Precautions

Hypertension. In DTC, hypertension occurred in 73% of patients on LENVIMA (44% grade 3-4). In RCC, hypertension occurred in 42% of patients on LENVIMA + everolimus (13% grade 3). Systolic blood pressure ≥160 mmHg occurred in 29% of patients, and 21% had diastolic blood pressure ≥100 mmHg. In HCC, hypertension occurred in 45% of LENVIMA-treated patients (24% grade 3). Grade 4 hypertension was not reported in HCC.

Serious complications of poorly controlled hypertension have been reported. Control blood pressure prior to initiation. Monitor blood pressure after 1 week, then every 2 weeks for the first 2 months, and then at least monthly thereafter during treatment. Withhold and resume at reduced dose when hypertension is controlled or permanently discontinue based on severity.

Cardiac Dysfunction. Serious and fatal cardiac dysfunction can occur with LENVIMA. Across clinical trials in 799 patients with DTC, RCC, and HCC, grade 3 or higher cardiac dysfunction occurred in 3% of LENVIMA-treated patients. Monitor for clinical symptoms or signs of cardiac dysfunction. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Arterial Thromboembolic Events. Among patients receiving LENVIMA or LENVIMA + everolimus, arterial thromboembolic events of any severity occurred in 2% of patients in RCC and HCC and 5% in DTC. Grade 3-5 arterial thromboembolic events ranged from 2% to 3% across all clinical trials.

Permanently discontinue following an arterial thrombotic event. The safety of resuming after an arterial thromboembolic event has not been established and LENVIMA has not been studied in patients who have had an arterial thromboembolic event within the previous 6 months.

Hepatotoxicity. Across clinical studies enrolling 1,327 LENVIMA-treated patients with malignancies other than HCC, serious hepatic adverse reactions occurred in 1.4% of patients. Fatal events, including hepatic failure, acute hepatitis and hepatorenal syndrome, occurred in 0.5% of patients. In HCC, hepatic encephalopathy occurred in 8% of LENVIMA-treated patients (5% grade 3-5). Grade 3-5 hepatic failure occurred in 3% of LENVIMA-treated patients. 2% of patients discontinued LENVIMA due to hepatic encephalopathy and 1% discontinued due to hepatic failure.

Monitor liver function prior to initiation, then every 2 weeks for the first 2 months, and at least monthly thereafter during treatment. Monitor patients with HCC closely for signs of hepatic failure, including hepatic encephalopathy. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Renal Failure or Impairment. Serious including fatal renal failure or impairment can occur with LENVIMA. Renal impairment was reported in 14% and 7% of LENVIMA-treated patients in DTC and HCC, respectively. Grade 3-5 renal failure or impairment occurred in 3% of patients with DTC and 2% of patients with HCC, including 1 fatal event in each study. In RCC, renal impairment or renal failure was reported in 18% of LENVIMA + everolimus–treated patients (10% grade 3).

Initiate prompt management of diarrhea or dehydration/hypovolemia. Withhold and resume at reduced dose upon recovery or permanently discontinue for renal failure or impairment based on severity.

Proteinuria. In DTC and HCC, proteinuria was reported in 34% and 26% of LENVIMA-treated patients, respectively. Grade 3 proteinuria occurred in 11% and 6% in DTC and HCC, respectively. In RCC, proteinuria occurred in 31% of patients receiving LENVIMA + everolimus (8% grade 3).

Monitor for proteinuria prior to initiation and periodically during treatment. If urine dipstick proteinuria ≥2+ is detected, obtain a 24-hour urine protein. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Diarrhea. Of the 737 LENVIMA-treated patients in DTC and HCC, diarrhea occurred in 49% (6% grade 3). In RCC, diarrhea occurred in 81% of LENVIMA + everolimus–treated patients (19% grade 3). Diarrhea was the most frequent cause of dose interruption/reduction, and diarrhea recurred despite dose reduction.

Promptly initiate management of diarrhea. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Fistula Formation and Gastrointestinal Perforation. Of the 799 patients treated with LENVIMA or LENVIMA + everolimus in DTC, RCC, and HCC, fistula or gastrointestinal perforation occurred in 2%. Permanently discontinue in patients who develop gastrointestinal perforation of any severity or grade 3-4 fistula.

QT Interval Prolongation. In DTC, QT/QTc interval prolongation occurred in 9% of LENVIMA-treated patients and QT interval prolongation of >500 ms occurred in 2%. In RCC, QTc interval increases of >60 ms occurred in 11% of patients receiving LENVIMA + everolimus and QTc interval >500 ms occurred in 6%. In HCC, QTc interval increases of >60 ms occurred in 8% of LENVIMA-treated patients and QTc interval >500 ms occurred in 2%.

Monitor and correct electrolyte abnormalities at baseline and periodically during treatment. Monitor electrocardiograms in patients with congenital long QT syndrome, congestive heart failure, bradyarrhythmias, or those who are taking drugs known to prolong the QT interval, including Class Ia and III antiarrhythmics. Withhold and resume at reduced dose upon recovery based on severity.

Hypocalcemia. In DTC, grade 3-4 hypocalcemia occurred in 9% of LENVIMA-treated patients. In 65% of cases, hypocalcemia improved or resolved following calcium supplementation with or without dose interruption or dose reduction. In RCC, grade 3-4 hypocalcemia occurred in 6% of LENVIMA + everolimus–treated patients. In HCC, grade 3 hypocalcemia occurred in 0.8% of LENVIMA-treated patients.

Monitor blood calcium levels at least monthly and replace calcium as necessary during treatment. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity.

Reversible Posterior Leukoencephalopathy Syndrome. Across clinical studies of 1,823 patients who received LENVIMA as a single agent, RPLS occurred in 0.3%. Confirm diagnosis of RPLS with MRI. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity and persistence of neurologic symptoms.

Hemorrhagic Events. Serious including fatal hemorrhagic events can occur with LENVIMA. In DTC, RCC, and HCC clinical trials, hemorrhagic events, of any grade, occurred in 29% of the 799 patients treated with LENVIMA as a single agent or in combination with everolimus. The most frequently reported hemorrhagic events (all grades and occurring in at least 5% of patients) were epistaxis and hematuria. In DTC, grade 3-5 hemorrhage occurred in 2% of LENVIMA-treated patients, including 1 fatal intracranial hemorrhage among 16 patients who received LENVIMA and had CNS metastases at baseline. In RCC, grade 3-5 hemorrhage occurred in 8% of LENVIMA + everolimus–treated patients, including 1 fatal cerebral hemorrhage. In HCC, grade 3-5 hemorrhage occurred in 5% of LENVIMA-treated patients, including 7 fatal hemorrhagic events.

Serious tumor-related bleeds, including fatal hemorrhagic events, occurred in LENVIMA-treated patients in clinical trials and in the postmarketing setting. In postmarketing surveillance, serious and fatal carotid artery hemorrhages were seen more frequently in patients with anaplastic thyroid carcinoma (ATC) than other tumors. Safety and effectiveness of LENVIMA in patients with ATC have not been demonstrated in clinical trials.

Consider the risk of severe or fatal hemorrhage associated with tumor invasion or infiltration of major blood vessels (eg, carotid artery). Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Impairment of Thyroid Stimulating Hormone Suppression/Thyroid Dysfunction. LENVIMA impairs exogenous thyroid suppression. In DTC, 88% of patients had baseline thyroid stimulating hormone (TSH) level ≤0.5 mU/L. In patients with normal TSH at baseline, elevation of TSH level >0.5 mU/L was observed post baseline in 57% of LENVIMA-treated patients. In RCC and HCC, grade 1 or 2 hypothyroidism occurred in 24% of LENVIMA + everolimus–treated patients and 21% of LENVIMA-treated patients, respectively. In patients with normal or low TSH at baseline, elevation of TSH was observed post baseline in 70% of LENVIMA-treated patients in HCC and 60% of LENVIMA + everolimus–treated patients in RCC.

Monitor thyroid function prior to initiation and at least monthly during treatment. Treat hypothyroidism according to standard medical practice.

Wound Healing Complications. Wound healing complications, including fistula formation and wound dehiscence, can occur with LENVIMA. Withhold for at least 6 days prior to scheduled surgery. Resume after surgery based on clinical judgment of adequate wound healing. Permanently discontinue in patients with wound healing complications.

Embryo-fetal Toxicity. Based on its mechanism of action and data from animal reproduction studies, LENVIMA can cause fetal harm when administered to pregnant women. In animal reproduction studies, oral administration of lenvatinib during organogenesis at doses below the recommended clinical doses resulted in embryotoxicity, fetotoxicity, and teratogenicity in rats and rabbits. Advise pregnant women of the potential risk to a fetus; and advise females of reproductive potential to use effective contraception during treatment with LENVIMA and for at least 30 days after the last dose.

Adverse Reactions

In DTC, the most common adverse reactions (≥30%) observed in LENVIMA-treated patients were hypertension (73%), fatigue (67%), diarrhea (67%), arthralgia/myalgia (62%), decreased appetite (54%), decreased weight (51%), nausea (47%), stomatitis (41%), headache (38%), vomiting (36%), proteinuria (34%), palmar-plantar erythrodysesthesia syndrome (32%), abdominal pain (31%), and dysphonia (31%). The most common serious adverse reactions (≥2%) were pneumonia (4%), hypertension (3%), and dehydration (3%). Adverse reactions led to dose reductions in 68% of LENVIMA-treated patients; 18% discontinued LENVIMA. The most common adverse reactions (≥10%) resulting in dose reductions were hypertension (13%), proteinuria (11%), decreased appetite (10%), and diarrhea (10%); the most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were hypertension (1%) and asthenia (1%).

In RCC, the most common adverse reactions (≥30%) observed in LENVIMA + everolimus–treated patients were diarrhea (81%), fatigue (73%), arthralgia/myalgia (55%), decreased appetite (53%), vomiting (48%), nausea (45%), stomatitis (44%), hypertension (42%), peripheral edema (42%), cough (37%), abdominal pain (37%), dyspnea (35%), rash (35%), decreased weight (34%), hemorrhagic events (32%), and proteinuria (31%). The most common serious adverse reactions (≥5%) were renal failure (11%), dehydration (10%), anemia (6%), thrombocytopenia (5%), diarrhea (5%), vomiting (5%), and dyspnea (5%). Adverse reactions led to dose reductions or interruption in 89% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were diarrhea (21%), fatigue (8%), thrombocytopenia (6%), vomiting (6%), nausea (5%), and proteinuria (5%). Treatment discontinuation due to an adverse reaction occurred in 29% of patients.

In HCC, the most common adverse reactions (≥20%) observed in LENVIMA-treated patients were hypertension (45%), fatigue (44%), diarrhea (39%), decreased appetite (34%), arthralgia/myalgia (31%), decreased weight (31%), abdominal pain (30%), palmar-plantar erythrodysesthesia syndrome (27%), proteinuria (26%), dysphonia (24%), hemorrhagic events (23%), hypothyroidism (21%), and nausea (20%). The most common serious adverse reactions (≥2%) were hepatic encephalopathy (5%), hepatic failure (3%), ascites (3%), and decreased appetite (2%). Adverse reactions led to dose reductions or interruption in 62% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were fatigue (9%), decreased appetite (8%), diarrhea (8%), proteinuria (7%), hypertension (6%), and palmar-plantar erythrodysesthesia syndrome (5%). Treatment discontinuation due to an adverse reaction occurred in 20% of patients. The most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were fatigue (1%), hepatic encephalopathy (2%), hyperbilirubinemia (1%), and hepatic failure (1%).

Use in Specific Populations

Because of the potential for serious adverse reactions in breastfed infants, advise women to discontinue breastfeeding during treatment and for at least 1 week after last dose. LENVIMA may impair fertility in males and females of reproductive potential.

No dose adjustment is recommended for patients with mild (CLcr 60-89 mL/min) or moderate (CLcr 30-59 mL/min) renal impairment. LENVIMA concentrations may increase in patients with DTC or RCC and severe (CLcr 15-29 mL/min) renal impairment. Reduce the dose for patients with RCC or DTC and severe renal impairment. There is no recommended dose for patients with HCC and severe renal impairment. LENVIMA has not been studied in patients with end stage renal disease.

No dose adjustment is recommended for patients with HCC and mild hepatic impairment (Child-Pugh A). There is no recommended dose for patients with HCC with moderate (Child-Pugh B) or severe (Child-Pugh C) hepatic impairment.

No dose adjustment is recommended for patients with DTC or RCC and mild or moderate hepatic impairment. LENVIMA concentrations may increase in patients with DTC or RCC and severe hepatic impairment. Reduce the dose for patients with DTC or RCC and severe hepatic impairment.

Please see Prescribing Information for LENVIMA (lenvatinib) at View Source

About the AstraZeneca and Merck Strategic Oncology Collaboration

In July 2017, AstraZeneca and Merck & Co., Inc., Kenilworth, NJ, US, known as MSD outside the United States and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize LYNPARZA, the world’s first PARP inhibitor, and potential new medicine selumetinib, a MEK inhibitor, for multiple cancer types. Working together, the companies will develop LYNPARZA and selumetinib in combination with other potential new medicines and as monotherapies. Independently, the companies will develop LYNPARZA and selumetinib in combination with their respective PD-L1 and PD-1 medicines.

About the Eisai and Merck Strategic Collaboration

In March 2018, Eisai and Merck, known as MSD outside the United States and Canada, through an affiliate, entered into a strategic collaboration for the worldwide co-development and co-commercialization of LENVIMA. Under the agreement, the companies will jointly develop, manufacture and commercialize LENVIMA, both as monotherapy and in combination with Merck’s anti-PD-1 therapy KEYTRUDA.

In addition to ongoing clinical studies evaluating the KEYTRUDA plus LENVIMA combination across several different tumor types, including renal cell carcinoma, the companies will jointly initiate new clinical studies through the LEAP (LEnvatinib And Pembrolizumab) clinical program, which will evaluate the combination to support 11 potential indications in six types of cancer (endometrial cancer, hepatocellular carcinoma, melanoma, non-small cell lung cancer, squamous cell carcinoma of the head and neck, and urothelial cancer). The LEAP clinical program also includes a new basket trial targeting six additional cancer types (biliary tract cancer, triple-negative breast cancer, colorectal cancer, gastric cancer, glioblastoma and ovarian cancer). The LENVIMA and KEYTRUDA combination is not approved in any cancer types today.

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

Ayala Pharmaceuticals Announces Appointment of Gary Gordon, M.D., Ph.D., as Chief Medical Officer

On September 9, 2019 Ayala Pharmaceuticals, Inc., a clinical-stage biopharmaceutical company dedicated to developing targeted cancer therapies for people living with genetically defined cancers, reported the appointment of Gary Gordon, M.D., Ph.D., as its Chief Medical Officer (Press release, Ayala Pharmaceuticals, SEP 9, 2019, View Source [SID1234539363]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are pleased to welcome Dr. Gordon to the Ayala executive team as he brings a deep understanding of cancer clinical trial execution, coupled with strong expertise in drug development," said Roni Mamluk, Ph.D., Chief Executive Officer of Ayala. "Dr. Gordon’s wealth of knowledge and leadership will be instrumental as we work to further advance our pipeline."

Dr. Gordon brings over 30 years of experience in oncology, drug development, R&D and clinical and regulatory affairs for both biotechnology and larger biopharmaceutical companies. Dr. Gordon joins Ayala from AbbVie, where he served as the Vice President of Oncology Development. During his time at AbbVie, Dr. Gordon oversaw the development and advancement of nearly 200 clinical studies in approximately 50 countries. Previously, he was a Divisional Vice President of Global Oncology Development, and before that the Global Project Head for PPD R&D, both at Abbott Laboratories. Prior to that role, Dr. Gordon was the Chief Scientific Officer and Vice President of Clinical Affairs at Ovation Pharmaceuticals where he spearheaded the acquisition of five drugs from Abbott.

"With an exciting pipeline and strong scientific rationale in place, I believe that Ayala’s gamma secretase inhibitors, AL101 and AL102, have the potential to offer patients with genetically-defined cancers new treatment options that they desperately need," said Gary Gordon, M.D., Ph.D., Chief Medical Officer of Ayala. "I look forward to working with the broader team at Ayala as we work to further advance these novel programs."

Dr. Gordon received his M.D. and Ph.D. degrees from the Johns Hopkins University School of Medicine, where he also completed his residency and postdoctoral training as well as served as an Associate Professor of Medical Oncology.

Daiichi Sankyo Advances [Fam-] Trastuzumab Deruxtecan (DS-8201) in Japan with Regulatory Submission in HER2 Positive Metastatic Breast Cancer

On September 9, 2019 Daiichi Sankyo Company, Limited (hereafter, Daiichi Sankyo) reported the submission of a New Drug Application (NDA) to Japan’s Ministry of Health, Labour and Welfare (MHLW) for the use of [fam-] trastuzumab deruxtecan (DS-8201), an investigational HER2 targeting antibody drug conjugate (ADC), for the treatment of patients with HER2 positive metastatic breast cancer (Press release, Daiichi Sankyo, SEP 9, 2019, View Source [SID1234539362]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The Japan NDA is primarily based on the positive results from the pivotal phase 2 DESTINY-Breast01 trial of [fam-] trastuzumab deruxtecan, an open-label, global, multicenter trial, which evaluated dosing, efficacy and safety in patients with HER2 positive metastatic breast cancer. The submission also includes data from the phase 1 trial published in The Lancet Oncology.[1] The response rate observed in DESTINY-Breast01, as assessed by an independent review committee, confirmed the clinical activity observed in the phase 1 trial. Data from DESTINY-Breast01 will be presented at an upcoming medical meeting.

"We are proud to initiate this critical next step in the regulatory process in Japan and look forward to the presentation of the phase 2 DESTINY-Breast01 study of [fam-] trastuzumab deruxtecan to the scientific community," said Antoine Yver, MD, MSc, Executive Vice President and Global Head, Oncology Research and Development, Daiichi Sankyo. "We look forward to working closely with the Japan Health Authority on our application for [fam-] trastuzumab deruxtecan in order to bring this important potential new treatment to patients in Japan."

[Fam-] trastuzumab deruxtecan is currently in development for the treatment of patients with a variety of HER2 expressing or HER2 mutant cancers, including gastric, colorectal and lung cancer, as well as in breast cancer with HER2 low expression.

The safety and tolerability profile of [fam-] trastuzumab deruxtecan in DESTINY-Breast01 was consistent with the phase 1 trial data published in The Lancet Oncology, in which the most common adverse events (≥30 percent, any grade) included nausea, decreased appetite, vomiting, alopecia, fatigue, anemia, diarrhea and constipation. Cases of drug-related pneumonitis, including grade 5 events, have also been reported in the clinical development program.

About HER2
HER2 is a tyrosine kinase receptor growth-promoting protein found on the surface of some cancer cells that is associated with aggressive disease and poorer prognosis in breast cancer patients.[2] To be considered HER2 positive, tumor cancer cells are usually tested by one of two methods: immunohistochemistry (IHC) or fluorescent in situ hybridization (FISH). IHC test results are reported as: 0, IHC 1+, IHC 2+, or IHC 3+.[2] A finding of IHC 3+ and/or FISH amplification is considered positive.[2] There are currently no approved HER2 targeted therapies for HER2 FISH negative, IHC 2+ or IHC 1+ tumors.

Unmet Need in HER2 Positive Breast Cancer
Approximately one in five breast cancers are HER2 positive.[3],[4] Despite recent improvements and approvals of new therapies, there remains significant unmet clinical needs for patients with advanced HER2 positive metastatic breast cancer.[5],[6] This disease remains incurable with these patients eventually progressing after available therapies.[5],[6]

About DESTINY-Breast01
DESTINY-Breast01 is a pivotal phase 2, open-label, global, multicenter, two-part trial evaluating the safety and efficacy of [fam-] trastuzumab deruxtecan in patients with HER2 positive unresectable and/or metastatic breast cancer previously treated with trastuzumab emtansine (T-DM1). The primary endpoint of the trial is objective response rate. Secondary objectives include duration of response, disease control rate, clinical benefit rate, progression-free survival and overall survival.

The first part of the trial includes a pharmacokinetic stage and a dose-finding stage to identify the recommended dose of [fam-] trastuzumab deruxtecan to be evaluated in the second part of the trial. The second part enrolled patients into one of two cohorts: patients resistant or refractory to T-DM1 (part 2a) and patients who discontinued treatment with T-DM1 for reasons other than resistant or refractory disease (part 2b). Enrollment into DESTINY-Breast01 was completed in September 2018 with 253 patients at more than 100 sites across North America, Europe, Japan and other countries in Asia.

About [Fam-] Trastuzumab Deruxtecan
[Fam-] trastuzumab deruxtecan (DS-8201; fam-trastuzumab deruxtecan in U.S. only; trastuzumab deruxtecan in other regions of world) is the lead product in the investigational ADC Franchise of the Daiichi Sankyo Cancer Enterprise and the most advanced program in AstraZeneca’s ADC Scientific platform. ADCs are targeted cancer medicines that deliver cytotoxic chemotherapy ("payload") to cancer cells via a linker attached to a monoclonal antibody that binds to a specific target expressed on cancer cells.

Designed using Daiichi Sankyo’s proprietary DXd ADC technology, [fam-] trastuzumab deruxtecan is comprised of a humanized HER2 antibody attached to a novel topoisomerase I inhibitor payload by a tetrapeptide-based linker. It is designed to target and deliver chemotherapy inside cancer cells and reduce systemic exposure to the cytotoxic payload (or chemotherapy) compared to the way chemotherapy is commonly delivered.

A broad and comprehensive development program with [fam-] trastuzumab deruxtecan is underway in North America, Europe and Asia, including five pivotal trials in HER2 expressing breast and gastric cancers, including in breast cancer patients with HER2 low expression. [Fam-] trastuzumab deruxtecan is also in phase 2 development for HER2 expressing advanced colorectal cancer and metastatic non-squamous HER2 overexpressing or HER2 mutated NSCLC, and phase 1 development in combination with nivolumab for HER2 expressing metastatic breast and bladder cancers.

[Fam-] trastuzumab deruxtecan was granted Breakthrough Therapy Designation in 2017 by the U.S. FDA for the treatment of patients with HER2 positive, locally-advanced or metastatic breast cancer who have been treated with trastuzumab and pertuzumab and have disease progression after T-DM1. Fast Track Designation was also granted in the U.S. for the treatment of HER2 positive unresectable and/or metastatic breast cancer in patients who have progressed after prior treatment with HER2 targeted medicines, including T-DM1. Trastuzumab deruxtecan has received SAKIGAKE designation for the treatment of advanced HER2 positive advanced gastric or gastroesophageal junction cancer by the Japan Ministry of Health, Labour and Welfare.

[Fam-] trastuzumab deruxtecan is an investigational agent that has not been approved for any indication

in any country. Safety and efficacy have not been established.

About the Collaboration Between Daiichi Sankyo and AstraZeneca
In March 2019, Daiichi Sankyo and AstraZeneca entered into a global collaboration to jointly develop and commercialize [fam-] trastuzumab deruxtecan as a medicine worldwide, except in Japan where Daiichi Sankyo will maintain exclusive rights. Daiichi Sankyo will be solely responsible for manufacturing and supply.

About Daiichi Sankyo Cancer Enterprise
The mission of Daiichi Sankyo Cancer Enterprise is to leverage our world-class, innovative science and push beyond traditional thinking to create meaningful treatments for patients with cancer. We are dedicated to transforming science into value for patients, and this sense of obligation informs everything we do. Anchored by three pillars including our investigational Antibody Drug Conjugate Franchise, Acute Myeloid Leukemia Franchise and Breakthrough Science, we aim to deliver seven distinct new molecular entities over eight years during 2018 to 2025. Our powerful research engines include two laboratories for biologic/immuno-oncology and small molecules in Japan, and Plexxikon Inc., our small molecule structure-guided R&D center in Berkeley, CA. For more information, please visit: www.DSCancerEnterprise.com.

BerGenBio Presents Phase II Trial Updates with Selective AXL Inhibitor Bemcentinib in Non-Small Cell Lung Cancer at 2019 World Conference on Lung Cancer

On September 8, 2019 BerGenBio ASA (OSE:BGBIO), a clinical-stage biopharmaceutical company developing novel, selective AXL kinase inhibitors for multiple cancer indications, reported that it will present study updates from its Phase II clinical development programme with bemcentinib (BGB324), a first-in-class highly selective oral AXL inhibitor, in non-small cell lung cancer (NSCLC) at the 2019 World Conference on Lung Cancer (WCLC) in Barcelona, Spain (07 – 10 September 2019) (Press release, BerGenBio, SEP 8, 2019, View Source [SID1234539361]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The two presentations will outline BerGenBio’s Phase II clinical trial (BGB008, NCT03184571) with bemcentinib and Merck’s anti-PD-1 therapy pembrolizumab (KEYTRUDA) in patients with advanced non-small cell lung cancer (NSCLC).

Data will be presented at a mini oral session entitled: Efficacy Results of Selective AXL Inhibitor Bemcentinib with Pembrolizumab Following Chemotherapy in Patients with NSCLC. As announced in June 2019, the preliminary results from the ongoing study showed promising clinical activity overall, particularly in patients with AXL positive tumours, including those with low or no PD-L1 expression. Preliminary median overall survival has reported 12.2 months, surpassing historical benchmarks in second-line treatment with PD-1 inhibitor monotherapy, especially in low PD-L1 patients; and the combination treatment was well-tolerated.

The Company will also present details of a second cohort of the Phase II trial (BGB008, NCT03184571) at a poster session, entitled: A Phase II Study of Selective AXL Inhibitor Bemcentinib and Pembrolizumab in Patients with NSCLC Refractory to Anti-PD(L)1. The trial has been expanded to include patients that have been previously treated with a PD-(L)1 inhibitor, or a PD-(L)1 inhibitor in combination with platinum containing chemotherapy and will further evaluate the clinical activity and safety profile of the combination.

Full abstracts are available online at View Source Materials presented at WCLC will be made available at www.bergenbio.com in the Investors / Presentations section following the sessions.

Richard Godfrey, Chief Executive Officer of BerGenBio, commented: "As we continue to gather data in refractory NSCLC patients, we hope to build up a clearer picture of the potential of bemcentinib in combination with pembrolizumab. Our focus remains on enhancing responses to anti-PD-L1 therapies, particularly in patients with no or limited expression of PD-L1, who may not have benefitted from such therapies. Results to date have been encouraging, and we look forward to providing updates as further data becomes available."

BGBC008, which began in October 2017, is being conducted under a clinical collaboration with Merck & Co., Inc., Kenilworth, N.J., USA, through a subsidiary, and is taking place at sites in the US, UK, Norway and Spain.

Presentation details
Efficacy Results of Selective AXL Inhibitor Bemcentinib with Pembrolizumab Following Chemotherapy in Patients with NSCLC

Enriqueta Felip et al
#MA03.06 – Clinomics and Genomics
Mini Oral Session
08 September 2019: Colorado Springs (1994), 11:05 – 11:10am CEST
A Phase II Study of Selective AXL Inhibitor Bemcentinib and Pembrolizumab in Patients with NSCLC Refractory to Anti-PD(L)1

Matthew Krebs et al
#P1.01-83 – Advanced NSCLC
Poster Viewing in the Exhibit Hall
08 September 2019: Exhibit Hall, 09:45am CEST
– END –

About AXL
AXL kinase is a cell membrane receptor and an essential mediator of the biological mechanisms underlying life-threatening diseases. In cancer, AXL suppresses the body’s immune response to tumours and drives cancer treatment failure across many indications. AXL inhibitors, therefore, have potential high value at the centre of cancer combination therapy, addressing significant unmet medical needs and multiple high-value market opportunities. Research has also shown that AXL mediates other aggressive diseases.

About Bemcentinib
Bemcentinib (formerly known as BGB324), is a potentially first-in-class selective AXL inhibitor in a broad phase II clinical development programme. Ongoing clinical trials are investigating bemcentinib in multiple solid and haematological tumours, in combination with current and emerging therapies (including immunotherapies, targeted therapies and chemotherapy), and as a single agent. Bemcentinib targets and binds to the intracellular catalytic kinase domain of AXL receptor tyrosine kinase and inhibits its activity. Increase in AXL function has been linked to key mechanisms of drug resistance and immune escape by tumour cells, leading to aggressive metastatic cancers.